首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin activates factor VIII by proteolysis at three P1 residues: Arg372, Arg740, and Arg1689. Cleavage at Arg372 and Arg1689 are essential for procofactor activation; however cleavage at Arg740 has not been rigorously studied. To evaluate the role for cleavage at Arg740, we prepared and stably expressed two recombinant B-domainless factor VIII mutants, R740H and R740Q to slow and eliminate, respectively, cleavage at this site. Specific activity values for the variants were approximately 50 and 20%, respectively, that of wild-type factor VIII. Activation of factor VIII R740H by thrombin showed an approximately 40-fold reduction in the rate of A2 subunit generation, which reflected an approximately 20-fold reduction in cleavage rate at Arg372. Similarly, a approximately 40-fold rate reduction in cleavage at Arg1689 and consequent generation of the A3-C1-C2 subunit were observed. Rate values for A2 and A3-C1-C2 subunit generation were reduced by >700-fold and approximately 140-fold, respectively, in the R740Q variant. These results suggest that initial cleavage at Arg740 affects cleavage at both Arg372 and Arg1689 sites. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed more modest rate reductions (<10-fold) in generating A2 and A3-C1-C2 subunits from either variant, suggesting that factor Xa-catalyzed activation of factor VIII was significantly less dependent upon prior cleavage at residue 740 than thrombin. Overall, these results support a model whereby cleavage of factor VIII by thrombin is an ordered pathway with cleavage at Arg740 facilitating cleavages at Arg372 and Arg1689, which result in procofactor activation.  相似文献   

2.
Plasmin not only functions as a key enzyme in the fibrinolytic system but also directly inactivates factor VIII and other clotting factors such as factor V. However, the mechanisms of plasmin-catalyzed factor VIII inactivation are poorly understood. In this study, levels of factor VIII activity increased approximately 2-fold within 3 min in the presence of plasmin, and subsequently decreased to undetectable levels within 45 min. This time-dependent reaction was not affected by von Willebrand factor and phospholipid. The rate constant of plasmin-catalyzed factor VIIIa inactivation was approximately 12- and approximately 3.7-fold greater than those mediated by factor Xa and activated protein C, respectively. SDS-PAGE analysis showed that plasmin cleaved the heavy chain of factor VIII into two terminal products, A1(37-336) and A2 subunits, by limited proteolysis at Lys(36), Arg(336), Arg(372), and Arg(740). The 80-kDa light chain was converted into a 67-kDa subunit by cleavage at Arg(1689) and Arg(1721), identical to the pattern induced by factor Xa. Plasmin-catalyzed cleavage at Arg(336) proceeded faster than that at Arg(372), in contrast to proteolysis by factor Xa. Furthermore, breakdown was faster than that in the presence of activated protein C, consistent with rapid inactivation of factor VIII. The cleavages at Arg(336) and Lys(36) occurred rapidly in the presence of A2 and A3-C1-C2 subunits, respectively. These results strongly indicated that cleavage at Arg(336) was a central mechanism of plasmin-catalyzed factor VIII inactivation. Furthermore, the cleavages at Arg(336) and Lys(36) appeared to be selectively regulated by the A2 and A3-C1-C2 domains, respectively, interacting with plasmin.  相似文献   

3.
The procofactor, factor VIII, is activated by thrombin or factor Xa-catalyzed cleavage at three P1 residues: Arg-372, Arg-740, and Arg-1689. The catalytic efficiency for thrombin cleavage at Arg-740 is greater than at either Arg-1689 or Arg-372 and influences reaction rates at these sites. Because cleavage at Arg-372 appears rate-limiting and dependent upon initial cleavage at Arg-740, we investigated whether cleavage at Arg-1689 influences catalysis at this step. Recombinant B-domainless factor VIII mutants, R1689H and R1689Q were prepared and stably expressed to slow and eliminate cleavage, respectively. Specific activity values for the His and Gln mutations were ∼50 and ∼10%, respectively, that of wild type. Thrombin activation of the R1689H variant showed an ∼340-fold reduction in the rate of Arg-1689 cleavage, whereas the R1689Q variant was resistant to thrombin cleavage at this site. Examination of heavy chain cleavages showed ∼4- and 11-fold reductions in A2 subunit generation and ∼3- and 7-fold reductions in A1 subunit generation for the R1689H and R1689Q mutants, respectively. These results suggest a linkage between light chain cleavage and cleavages in heavy chain. Results obtained evaluating proteolysis of the factor VIII mutants by factor Xa revealed modest rate reductions (<5-fold) in generating A2 and A1 subunits and in cleaving light chain at Arg-1721 from either variant, suggesting little dependence upon prior cleavage at residue 1689 as compared with thrombin. Overall, these results are consistent with a competition between heavy and light chains for thrombin exosite binding and subsequent proteolysis with binding of the former chain preferred.Factor VIII, a plasma protein missing or defective in individuals with hemophilia A, is synthesized as an ∼300-kDa single chain polypeptide corresponding to 2332 amino acids. Within the protein are six domains based on internal homologies and ordered as NH2-A1-A2-B-A3-C1-C2-COOH (1, 2). Bordering the A domains are short segments containing high concentrations of acidic residues that follow the A1 and A2 domains and precede the A3 domain and are designated a1 (residues 337–372), a2 (residues 711–740), and a3 (1649–1689). Factor VIII is processed by cleavage at the B-A3 junction to generate a divalent metal ion-dependent heterodimeric protein composed of a heavy chain (A1-a1-A2-a2-B domains) and a light chain (a3-A3-C1-C2 domains) (3).The activated form of factor VIII, factor VIIIa, functions as a cofactor for factor IXa, increasing its catalytic efficiency by several orders of magnitude in the phospholipid- and Ca2+-dependent conversion of factor X to factor Xa (4). The factor VIII procofactor is converted to factor VIIIa through limited proteolysis catalyzed by thrombin or factor Xa (5, 6). Thrombin is believed to act as the physiological activator of factor VIII, as association of factor VIII with von Willebrand factor impairs the capacity for the membrane-dependent factor Xa to efficiently activate the procofactor (5, 7). Activation of factor VIII occurs through proteolysis by either protease via cleavage of three P1 residues at Arg-740 (A2-B domain junction), Arg-372 (A1-A2 domain junction), and Arg-1689 (a3-A3 junction) (5). After factor VIII activation, there is a weak electrostatic interaction between the A1 and A2 domains of factor VIIIa (8, 9) and spontaneous inactivation of the cofactor occurs through A2 subunit dissociation from the A1/A3-C1-C2 dimer, consequently dampening factor Xase (3).Thrombin cleavage of factor VIII appears to be an ordered pathway, with relative rates at Arg-740 > Arg-1689 > Arg-372 and the initial proteolysis at Arg-740 facilitating proteolysis at Arg-372 as well as Arg-1689 (10). This latter observation was based upon results showing that mutations at Arg-740, impairing this cleavage, significantly reduced cleavage rates at the two other P1 sites. Thrombin-catalyzed activation of factor VIII is dependent upon interactions involving the anion binding exosites of the proteinase (11, 12). Exosite binding is believed to determine substrate affinity, whereas subsequent active site docking primarily affects Vmax (13). Furthermore, the complex interactions involving multiple cleavages within a single substrate may utilize a ratcheting mechanism (14) where presentation of the scissile bond is facilitated by a prior cleavage event.Cleavage at Arg-372 is a critical step in thrombin activation of factor VIII as it exposes a cryptic functional factor IXa-interactive site in the A2 domain (15), whereas cleavage at Arg-1689 liberates factor VIII from von Willebrand factor (16) and contributes to factor VIIIa specific activity (17, 18). Although cleavage at Arg-740 represents a fast step relative to cleavages at other P1 residues in the activation of factor VIII (19), the influence of Arg-1689 cleavage on cleavages in the heavy chain remains unknown. In the present study cleavage at Arg-1689 is examined using recombinant factor VIII variants possessing single point mutations of R1689Q and R1689H. Results indicating reduced rates of A1 and A2 subunit generation, which are dependent upon the residue at position 1689, suggest that cleavage at Arg-1689 affects rates of proteolysis at Arg-740 and Arg-372. These observations are consistent with a mechanism whereby heavy chain and light chain compete for a binding thrombin exosite(s), with heavy chain preferred over light chain. In this competition mechanism, cleavage at Arg-740 is favored over Arg-1689. Subsequent cleavage at Arg-372 in heavy chain may involve a ratcheting mechanism after initial cleavage at Arg-740. On the other hand, the mechanism for factor Xa-catalyzed activation of factor VIII appears to be less dependent on cleavage at the Arg-1689 site as compared with thrombin.  相似文献   

4.
Human factor VIII and factor VIIIa were proteolytically inactivated by activated protein C. Cleavages occurred within the heavy chain (contiguous A1-A2-B domains) of factor VIII and in the heavy chain-derived A1 and A2 subunits of factor VIIIa, whereas no proteolysis was observed in the light chain or light chain-derived A3-C1-C2 subunit. Reactivity to an anti-A2 domain monoclonal antibody and NH2-terminal sequence analysis of three terminal digest fragments from factor VIII allowed ordering of fragments and identification of cleavage sites. Fragment A1 was derived from the NH2 terminus and resulted from cleavage at Arg336-Met337. The A2 domain was bisected following cleavage at Arg562-Gly563 and yielded fragments designated A2N and A2C. A third cleavage site is proposed at the A2-B junction (Arg740-Ser741) since fragment A2C was of equivalent size when derived either from factor VIII or factor VIIIa. The site at Arg562 was preferentially cleaved first in factor VIII(alpha) compared with the site at Arg336, and it was this initial cleavage that most closely correlated with the loss of cofactor activity. Factor VIIIa was inactivated 5-fold faster than factor VIII, possibly as a result of increased protease utilization of the site at Arg562 when the A2 subunit is not contiguous with the A1 domain. When initial cleavage occurred at Arg336, it appeared to preclude subsequent cleavage at Arg562, possibly by promoting dissociation of the A2 domain (subunit) from the A1/light chain dimer. This conclusion was supported by the failure of protease treated A1/A3-C1-C2 dimer to bind A2 subunit and gel filtration analysis that showed dissociation of the A2 domain-derived fragments, A2N and A2C, from the A1 fragment/light chain dimer. These results suggest a mechanism for activated protein C-catalyzed inactivation of factor VIII(alpha) involving both covalent alteration and fragment dissociation.  相似文献   

5.
Alpha-thrombin has two separate electropositive binding exosites (anion binding exosite I, ABE-I and anion binding exosite II, ABE-II) that are involved in substrate tethering necessary for efficient catalysis. Alpha-thrombin catalyzes the activation of factor V and factor VIII following discrete proteolytic cleavages. Requirement for both anion binding exosites of the enzyme has been suggested for the activation of both procofactors by alpha-thrombin. We have used plasma-derived alpha-thrombin, beta-thrombin (a thrombin molecule that has only ABE-II available), and a recombinant prothrombin molecule rMZ-II (R155A/R284A/R271A) that can only be cleaved at Arg(320) (resulting in an enzymatically active molecule that has only ABE-I exposed, rMZ-IIa) to ascertain the role of each exosite for procofactor activation. We have also employed a synthetic sulfated pentapeptide (DY(SO(3)(-))DY(SO(3)(-))Q, designated D5Q1,2) as an exosite-directed inhibitor of thrombin. The clotting time obtained with beta-thrombin was increased by approximately 8-fold, whereas rMZ-IIa was 4-fold less efficient in promoting clotting than alpha-thrombin under similar experimental conditions. Alpha-thrombin readily activated factor V following cleavages at Arg(709), Arg(1018), and Arg(1545) and factor VIII following proteolysis at Arg(372), Arg(740), and Arg(1689). Cleavage of both procofactors by alpha-thrombin was significantly inhibited by D5Q1,2. In contrast, beta-thrombin was unable to cleave factor V at Arg(1545) and factor VIII at both Arg(372) and Arg(1689). The former is required for light chain formation and expression of optimum factor Va cofactor activity, whereas the latter two cleavages are a prerequisite for expression of factor VIIIa cofactor activity. Beta-thrombin was found to cleave factor V at Arg(709) and factor VIII at Arg(740), albeit less efficiently than alpha-thrombin. The sulfated pentapeptide inhibited moderately both cleavages by beta-thrombin. Under similar experimental conditions, membrane-bound rMZ-IIa cleaved and activated both procofactor molecules. Activation of the two procofactors by membrane-bound rMZ-IIa was severely impaired by D5Q1,2. Overall the data demonstrate that ABE-I alone of alpha-thrombin can account for the interaction of both procofactors with alpha-thrombin resulting in their timely and efficient activation. Because formation of meizothrombin precedes that of alpha-thrombin, our findings also imply that meizothrombin may be the physiological activator of both procofactors in vivo in the presence of a procoagulant membrane surface during the early stages of coagulation.  相似文献   

6.
Newell JL  Fay PJ 《Biochemistry》2008,47(33):8786-8795
Factor VIII is activated by thrombin through proteolysis at Arg740, Arg372, and Arg1689. One region implicated in this exosite-dependent interaction is the factor VIII a2 segment (residues 711-740) separating the A2 and B domains. Residues 717-725 (DYYEDSYED) within this region consist of five acidic residues and three sulfo-Tyr residues, thus representing a high density of negative charge potential. The contributions of these residues to thrombin-catalyzed activation of factor VIII were assessed following mutagenesis of acidic residues to Ala or Tyr residues to Phe and expression and purification of the B-domainless proteins from stable-expressing cell lines. All mutations showed reduced specific activity from approximately 30% to approximately 70% of the wild-type value. While replacement of the Tyr residues showed little, if any, effect on rates of thrombin-catalyzed proteolysis of factor VIII and consequent activation, the acidic to Ala mutations Glu720Ala, Asp721Ala, Glu724Ala, and Asp725Ala showed decreased rates of proteolysis at each of the three P1 residues. Mutations at residues Glu724 and Asp725 were most affected with double mutations at these sites showing approximately 10-fold and approximately 30-fold reduced rates of cleavage at Arg372 and Arg1689, respectively. Factor VIII activation profiles paralleled the results assessing rates of proteolysis. Kinetic analyses revealed these mutations minimally affected apparent V max for thrombin-catalyzed cleavage but variably increased the K m for procofactor up to 7-fold, suggesting the latter parameter was dominant in reducing catalytic efficiency. These results suggest that residues Glu720, Asp721, Glu724, and Asp725 likely constitute an exosite-interactive region in factor VIII facilitating cleavages for procofactor activation.  相似文献   

7.
Factor (F)VIII can be activated to FVIIIa by FXa following cleavages at Arg(372), Arg(740), and Arg(1689). FXa also cleaves FVIII/FVIIIa at Arg(336) and Arg(562) resulting in inactivation of the cofactor. These inactivating cleavages occur on a slower time scale than the activating ones. We assessed the contributions to cleavage rate and cofactor function of residues flanking Arg(336), the primary site yielding FVIII(a) inactivation, following replacement of these residues with those flanking the faster-reacting Arg(740) and Arg(372) sites and the slower-reacting Arg(562) site. Replacing P4-P3' residues flanking Arg(336) with those from Arg(372) or Arg(740) resulted in ~4-6-fold increases in rates of FXa-catalyzed inactivation of FVIIIa, which paralleled the rates of proteolysis at Arg(336). Examination of partial sequence replacements showed a predominant contribution of prime residues flanking the scissile bonds to the enhanced rates. Conversely, replacement of this sequence with residues flanking the slow-reacting Arg(562) site yielded inactivation and cleavage rates that were ~40% that of the WT values. The capacity for FXa to activate FVIII variants where cleavage at Arg(336) was accelerated due to flanking sequence replacement showed marked reductions in peak activity, whereas reducing the cleavage rate at this site enhanced peak activity. Furthermore, plasma-based thrombin generation assays employing the variants revealed significant reductions in multiple parameter values with acceleration of Arg(336) cleavage suggesting increased down-regulation of FXase. Overall, these results are consistent with a model of competition for activating and inactivating cleavages catalyzed by FXa that is modulated in large part by sequences flanking the scissile bonds.  相似文献   

8.
Factor VIIIa consists of three subunits designated A1, A2, and A3-C1-C2. The isolated A2 subunit possesses limited cofactor activity in stimulating factor IXa-catalyzed activation of factor X. This activity is markedly enhanced by the A1 subunit (inter-subunit K(d) = 1.8 microm). The C-terminal region of A1 subunit (residues 337-372) is thought to represent an A2-interactive site. This region appears critical to factor VIIIa, because proteolysis at Arg(336) by activated protein C or factor IXa is inactivating. A truncated A1 (A1(336)) showed similar affinity for A2 subunit (K(d) = 0.9 microm) and stimulated its cofactor activity to approximately 50% that observed for native A1. However, A1(336) was unable to reconstitute factor VIIIa activity in the presence of A2 and A3-C1-C2 subunits. Fluorescence anisotropy of fluorescein (Fl)-FFR-factor IXa was differentially altered by factor VIIIa trimers containing either A1 or A1(336). Fluorescence energy transfer demonstrated that, although Fl-A1(336)/A3-C1-C2 bound acrylodan-A2 with similar affinity as the native dimer, an increased inter-fluorophore separation was observed. These results indicate that the C-terminal region of A1 appears necessary to properly orient A2 subunit relative to factor IXa in the cofactor rather than directly stimulate A2 and elucidate the mechanism for cofactor inactivation following cleavage at this site.  相似文献   

9.
Factor VIII is activated and inactivated by plasmin by limited proteolysis. In our one-stage clotting assay, these plasmin-catalyzed reactions were inhibited by the addition of isolated factor VIII A2 subunits and by Glu-Gly-Arg-active-site modified factor IXa. SDS-PAGE analysis showed that an anti-A2 monoclonal antibody, recognizing the factor IXa-interactive site (residues 484-509), blocked the plasmin-catalyzed cleavage at Arg(336) and Arg(372) but not at Arg(740). Surface plasmon resonance-based assays and ELISA demonstrated that the A2 subunit bound to active-site modified anhydro-plasmin with high affinity (K(d): 21 nM). Both an anti-A2 monoclonal antibody and a peptide comprising of A2 residues 479-504 blocked A2 binding by approximately 80% and approximately 55%, respectively. Mutant A2 molecules where the basic residues in A2 were converted to alanine were evaluated for binding of anhydro-plasmin. Among the tested mutants, the R484A A2 mutant possessed approximately 250-fold lower affinity than the wild-type A2. The affinities of K377A, K466A, and R471A mutants were decreased by 10-20-fold. The inhibitory effect of R484A mutant on plasmin-catalyzed inactivation of factor VIIIa was approximately 20% of that of wild-type A2. In addition, the inactivation rate by plasmin of factor VIIIa reconstituted with R484A mutant was approximately 3-fold lower than that with wild-type A2. These findings demonstrate that Arg(484) plays a key role within the A2 plasmin-binding site, responsible for plasmin-catalyzed factor VIII(a) inactivation.  相似文献   

10.
Activation of factor VIII by factor Xa is followed by proteolytic inactivation resulting from cleavage within the A1 subunit (residues 1-372) of factor VIIIa. Factor Xa attacks two sites in A1, Arg(336), which precedes the highly acidic C-terminal region, and a recently identified site at Lys(36). By using isolated A1 subunit as substrate for proteolysis, production of the terminal fragment, A1(37-336), was shown to proceed via two pathways identified by the intermediates A1(1-336) and A1(37-372) and generated by initial cleavage at Arg(336) and Lys(36), respectively. Appearance of the terminal product by the former pathway was 7-8-fold slower than the product obtained by the latter pathway. The isolated A1 subunit was cleaved slowly, independent of the presence of phospholipid. The A1/A3-C1-C2 dimer demonstrated an approximately 3-fold increased cleavage rate constant, and inclusion of phospholipid further enhanced this value by approximately 2-fold. Although association of A1 or A1(37-372) with A3-C1-C2 enhanced the rate of cleavage at Arg(336), inclusion of A3-C1-C2 did not affect the cleavage at Lys(36) in A1(1-336). A synthetic peptide 337-372 blocked the cleavage at Lys(36) (IC(50) = 230 microm) while showing little if any effect on cleavage at Arg(336). Proteolysis at Lys(36), and to a lesser extent Arg(336), was inhibited in a dose-dependent manner by heparin. These results suggest that inactivating cleavages catalyzed by factor Xa at Lys(36) and Arg(336) are regulated in part by the A3-C1-C2 subunit. Furthermore, cleavage at Lys(36) appears to be selectively modulated by the C-terminal acidic region of A1, a region that may interact with factor Xa via its heparin-binding exosite.  相似文献   

11.
Factor VIIIa is inactivated by a combination of two mechanisms. Activation of factor VIII by thrombin results in a heterotrimeric factor VIIIa that spontaneously inactivates due to dissociation of the A2 subunit. Additionally, factor VIIIa is cleaved by the anticoagulant serine protease, activated protein C, at two cleavage sites, Arg(336) in the A1 subunit and Arg(562) in the A2 subunit. We previously characterized an engineered variant of factor VIII which contains a disulfide bond between the A2 and the A3 subunits that prevents the spontaneous dissociation of the A2 subunit following thrombin activation. Thus, in the absence of activated protein C, this variant has stable activity following activation by thrombin. To isolate the effects of the individual activated protein C cleavage sites on factor VIIIa, we engineered mutations of the activated protein C cleavage sites into the disulfide bond-cross-linked factor VIII variant. Arg(336) cleavage is 6-fold faster than Arg(562) cleavage, and the Arg(336) cleavage does not fully inactivate factor VIIIa when A2 subunit dissociation is blocked. Protein S enhances both cleavage rates but enhances Arg(562) cleavage more than Arg(336) cleavage. Factor V also enhances both cleavage rates when protein S is present. Factor V enhances Arg(562) cleavage more than Arg(336) cleavage as well. As a result, in the presence of both activated protein C cofactors, Arg(336) cleavage is only twice as fast as Arg(562) cleavage. Therefore, both cleavages contribute significantly to factor VIIIa inactivation.  相似文献   

12.
APC (activated Protein C) inactivates human Factor VIIIa following cleavage at residues Arg336 and Arg562 within the A1 and A2 subunits respectively. The role of the P1 arginine in APC-catalysed inactivation of Factor VIIIa was examined by employing recombinant Factor VIIIa molecules where residues 336 and 562 were replaced with alanine and/or glutamine. Stably expressed Factor VIII proteins were activated by thrombin and resultant Factor VIIIa was reacted at high concentration with APC to minimize cofactor inactivation due to A2 subunit dissociation. APC cleaved wild-type Factor VIIIa at the A1 site with a rate approximately 25-fold greater than that for the A2 site. A1 mutants R336A and R336Q were inactivated approximately 9-fold slower than wild-type Factor VIIIa, whereas the A2 mutant R562A was inactivated approximately 2-fold slower. No cleavage at the mutated sites was observed. Taken together, these results suggested that cleavage at the A1 site was the dominant mechanism for Factor VIIIa inactivation catalysed by the proteinase. On the basis of cleavage at Arg336, a K(m) value for wild-type Factor VIIIa of 102 nM was determined, and this value was significantly greater than K(i) values (approximately 9-18 nM) obtained for an R336Q/R562Q Factor VIIIa. Furthermore, evaluation of a series of cluster mutants in the C-terminal region of the A1 subunit revealed a role for acidic residues in segment 341-345 in the APC-catalysed proteolysis of Arg336. Thus, while P1 residues contribute to catalytic efficiency, residues removed from these sites make a primary contribution to the overall binding of APC to Factor VIIIa.  相似文献   

13.
The proteolytic activation of highly purified, heterodimeric porcine factor VIII and factor VIII-von Willebrand factor complex by thrombin was compared at I 0.17, pH 7.0, 22 degrees C. During the activation of factor VIII, heavy-chain cleavage is necessary to activate the procoagulant function, whereas light-chain cleavage is required to dissociate factor VIII from von Willebrand factor. The kinetics of activation of free factor VIII and factor VIII-von Willebrand factor complex were identical. The steady-state kinetics of thrombin-catalyzed heavy-chain cleavages and light-chain cleavage of factor VIII either free or in complex with von Willebrand factor were studied using sodium dodecyl sulfate-polyacrylamide gel radioelectrophoresis and scanning densitometry of fragments derived from 125I-labeled factor VIII. Association of factor VIII with von Willebrand factor resulted in an 8-fold increase in the catalytic efficiency (kcat/Km) of light-chain cleavage (from 7 x 10(6) to 54 x 10(6) M-1 s-1). The catalytic efficiencies of heavy-chain cleavage at position 372 (approximately 6 x 10(6) M-1 s-1) and position 740 (approximately 100 x 10(6) M-1 s-1) were not affected by von Willebrand factor. We conclude that von Willebrand factor promotes cleavage of the factor VIII light chain by thrombin which is followed by rapid dissociation of the complex, so that the rate-limiting step becomes heavy-chain cleavage at position 372. This accounts for the observation that von Willebrand factor has no effect on the kinetics of activation of factor VIII by thrombin.  相似文献   

14.
Thrombin catalyzes the proteolytic activation of factor VIII, cleaving two sites in the heavy chain and one site in the light chain of the procofactor. Evaluation of thrombin binding the reaction products from heavy chain cleavage by steady state fluorescence energy transfer using a fluorophore-labeled, active site-modified thrombin as well as by solid phase binding assays using a thrombin Ser(205) --> Ala mutant indicated a high affinity site in the A1 subunit (K(d) approximately 5 nm) that was dependent upon the Na(+)-bound form of thrombin, whereas a moderate affinity site in the A2 subunit (K(d) approximately 100 nm) was observed for both Na(+)-bound and -free forms. The solid phase assay also indicated that hirudin blocked thrombin interaction with the A1 subunit and had little, if any, effect on its interaction with the A2 subunit. Conversely, heparin blocked thrombin interaction with the A2 subunit and showed a marginal effect on A1 binding. Evaluation of the A2 sequence revealed two regions rich in acidic residues that are localized close to the N and C termini of this domain. Peptides encompassing these clustered acidic regions, residues 373-395 and 719-740, blocked thrombin cleavage of the isolated heavy chain at Arg(372) and Arg(740) and inhibited A2 binding to thrombin Ser(205) --> Ala, suggesting that both A2 domain regions potentially support interaction with thrombin. A B-domainless, factor VIII double mutant Asp(392) --> Ala/Asp(394) --> Ala was constructed, expressed, and purified and possessed specific activity equivalent to a severe hemophilia phenotype. This mutant was resistant to cleavage at Arg(740), whereas cleavage at Arg(372) was not affected. These data suggest the acidic region comprising residues 389-394 in factor VIII A2 domain interacts with thrombin via its heparin-binding exosite and facilitates cleavage at Arg(740) during procofactor activation.  相似文献   

15.
We recently demonstrated that the residues 337-372, comprising the acidic C-terminal region in A1 subunit, interact with factor Xa during the proteolytic inactivation of factor VIIIa (Nogami, K., Wakabayashi, H., and Fay, P. J. (2003) J. Biol. Chem. 278, 16502-16509). We now show this sequence is important for factor Xa-catalyzed activation of factor VIII. Peptide 337-372 markedly inhibited cofactor activation, consistent with a delay in the rate of cleavage at the A1-A2 junction. Studies using the isolated factor VIII heavy chain indicated that the peptide completely blocked cleavage at the A1-A2 junction (IC50 = 11 microm) and partially blocked cleavage at the A2-B junction (IC50 = 100 microm). Covalent cross-linking was observed between the 337-372 peptide and factor Xa following reaction with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, and the peptide quenched the fluorescence of dansyl-Glu-Gly-Arg active site-modified factor Xa, suggesting that residues 337-372 directly interact with factor Xa. Studies using a monoclonal antibody recognizing residues 351-365 as well as the peptide to this sequence further restricted the interactive region. Mutant factor VIII molecules in which clustered acidic residues in the 337-372 segment were converted to alanine were evaluated for activation by factor Xa. Of the mutants tested, only factor Xa-catalyzed activation of the D361A/D362A/D363A mutant was inhibited with peak activity of approximately 50% and an activation rate constant of approximately 30% of the wild type values. These results indicate that the 337-372 acidic region separating A1 and A2 domains and, in particular, a cluster of acidic residues at position 361-363 contribute to a unique factor Xa-interactive site within the factor VIII heavy chain that promotes factor Xa docking during cofactor activation.  相似文献   

16.
Factor VIIIa consists of subunits designated A1, A2, and A3-C1-C2. The limited cofactor activity observed with the isolated A2 subunit is markedly enhanced by the A1 subunit. A truncated A1 (A1(336)) was previously shown to possess similar affinity for A2 and retain approximately 60% of its A2 stimulatory activity. We now identify a second site in A1 at Lys(36) that is cleaved by factor Xa. A1 truncated at both cleavage sites (A1(37-336)) showed little if any affinity for A2 (K(d)>2 microm), whereas factor VIIIa reconstituted with A2 plus A1(37-336)/A3-C1-C2 dimer demonstrated significant cofactor activity ( approximately 30% that of factor VIIIa reconstituted with native A1) in a factor Xa generation assay. These affinity values were consistent with values obtained by fluorescence energy transfer using acrylodan-labeled A2 and fluorescein-labeled A1. In contrast, factor VIIIa reconstituted with A1(37-336) showed little activity in a one-stage clotting assay. This resulted in part from a 5-fold increase in K(m) for factor X when A1 was cleaved at Arg(336). These findings suggest that both A1 termini are necessary for functional interaction of A1 with A2. Furthermore, the C terminus of A1 contributes to the K(m) for factor X binding to factor Xase, and this parameter is critical for activity assessed in plasma-based assays.  相似文献   

17.
Thrombin-catalyzed factor VIII activation is an essential positive feedback mechanism regulating intrinsic blood coagulation. A factor VIII human antibody, A-FF, with C2 epitope, exclusively inhibited factor VIII activation and cleavage at Arg(1689) by thrombin. The results suggested that A-FF prevented the interaction of thrombin with factor VIII and that the C2 domain was involved in the interaction with thrombin. We performed direct binding assays using anhydro-thrombin, a catalytically inactive derivative of thrombin in which the active-site serine is converted to dehydroalanine. Intact factor VIII, 80-kDa light chain, 72-kDa light chain, and heavy chain fragments bound dose-dependently to anhydro-thrombin, and the K(d) values were 48, 150, 106, and 180 nm, respectively. The C2 and A2 domains also dose-dependently bound to anhydro-thrombin, and the K(d) values were 440 and 488 nm, respectively. The A1 domain did not bind to anhydro-thrombin. A-FF completely inhibited C2 domain binding to anhydro-thrombin (IC(50), 18 nm), whereas it did not inhibit A2 domain binding. Furthermore, C2-specific affinity purified F(ab)'(2) of A-FF, and the recombinant C2 domain inhibited thrombin cleavage at Arg(1689). Our results indicate that the C2 domain contains the thrombin-binding site responsible for the cleavage at Arg(1689).  相似文献   

18.
Heterodimeric human factor VIII was proteolytically activated by catalytic levels of thrombin to yield the (labile) active cofactor factor VIIIa possessing an initial specific activity of approximately 80 units/microgram. Activation paralleled the generation of fragments A1 and A2 derived from the heavy chain and A3-C1-C2 derived from the light chain. Chromatography of factor VIIIa, on Mono-S buffered at pH 6.0 resulted in separation of the bulk of the A2 fragment from a fraction composed predominantly of A1/A3-C1-C2 dimer plus low levels of A2 fragment. Only the latter fraction contained clotting activity (approximately 20 units/microgram) which was stable and represented a less than 10% yield when compared with the peak activity of unfractionated factor VIIIa. Further depletion of A2 fragment from Mono-S-purified factor VIIIA, achieved using an immobilized monoclonal antibody to the A2 domain, yielded a relatively inactive A1/A3-C1-C2 dimer (less than 0.4 unit/microgram). Factor VIIIa (greater than 40 units/microgram) was reconstituted from the A1/A3-C1-C2 dimer plus the A2 fragment in a reaction that was Me(2+)-independent and inhibited by moderate ionic strength. Reassociation of A2 required the A1 subunit in that the A2 subunit associated weakly if at all to A3-C1-C2 in the absence of A1. These results indicated that human factor VIIIa is a trimer represented by the subunits A1/A2/A3-C1-C2 and that the A2 subunit is required for expression of factor VIIIa activity.  相似文献   

19.
The 337-372 sequence of the factor VIIIa A1 subunit contains interactive sites for both zymogen factor X and the active enzyme, factor Xa. Solid phase binding studies indicated that factor Xa possessed a >20-fold higher affinity for the isolated A1 subunit of factor VIIIa compared with factor X. Heparin completely inhibited zero-length cross-linking of the 337-372 peptide to factor Xa but not to factor X. In the presence of calcium, factor Xa showed greater affinity for heparin than factor X. Studies using factor Xa mutants in which heparin-binding exosite residues were individually replaced by Ala showed that the R240A mutant was defective in recognition of the Lys36 cleavage site, generating the A137-372 intermediate with approximately 20% the catalytic efficiency of wild type. This defect likely resulted from an approximately 4-fold increase in Km for the A1 substrate because kcat values for the wild type and mutant were equivalent. Cleavage of the A1-A2 domain junction by factor Xa R240A was not blocked by the 337-372 peptide. Studies using mutant factor VIII where clustered acidic residues in the 337-372 segment were replaced by Ala showed that a factor VIIIa D361A/D362A/D363A mutant possessed a approximately 1.6-fold increase in Km for factor X compared with wild type. However, similar Km values were observed for recombinant factor X and R240A substrates. These results indicate that the binding regions of factor X and factor Xa for A1 domain overlap and that both utilize acidic residues 361-363. Furthermore, factor Xa but not factor X interacts with high affinity at this site via residues contained within the heparin-binding exosite of the proteinase.  相似文献   

20.
Heterotrimeric factor VIIIa was reconstituted from isolated A2 subunit and A1/A3-C1-C2 dimer of thrombin-activated human factor VIII in a reaction that was sensitive to pH. Maximal levels of reconstituted factor VIIIa at pH 6.0 were as much as 20-fold greater than were values observed at pH 7.5. The presence of factor IXa and phospholipid resulted in a marked increase in factor VIIIa reconstituted at physiologic pH. However, the resultant factor VIIIa was unstable due to slow proteolysis of the A1 subunit. Factor IXa modified by the active site-specific reagent dansyl-glutamyl-glycyl-arginyl-chloromethyl ketone (DEGR-IXa) increased the level of factor VIIIa reconstituted from subunits to a similar extent as was observed for unmodified factor IXa and yielded stable factor VIIIa. This enhancement was saturated above a 1:1 molar ratio of DEGR-IXa to factor VIIIa subunits and could be blocked by an anti-factor IX antibody, suggesting that the DEGR-IXa-dependent increase in factor VIIIa reconstitution correlated with assembly of the factor X-ase complex. At a saturating amount of DEGR-IXa, the level of factor VIIIa reconstitution at pH 7.5 approached values obtained at pH 6.0. Fluorescence polarization measurements indicated that factor VIIIa altered binding of DEGR-IXa to phospholipid. However, neither the A2 subunit nor the A1/A3-C1-C2 dimer alone produced this effect. This result suggested that both A2 and A1/A3-C1-C2 were necessary for association of the cofactor with factor IXa. These results suggest a model in which assembly of the intrinsic factor X-ase complex stabilizes factor VIIIa through inhibition of subunit dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号