共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Lepismatidae are able to gain water from subsaturated atmosphere above a relative humidity of 45%, surmounting a water potential difference of at least 1.1×108 Pa (1,100 bar). This extraordinary task is performed by the monolayered epithelium of the posterior rectum. The particle coat of the folded apical membrane of this epithelium suggests the presence of the electrogenic, lumen-directed cation transport, which is commonly found in insects. Assuming this kind of transport and considering the anatomy of the organ, a working hypothesis for this hyposmotic water transport has been developed: The electrogenic cation transport maintains the circulation of the transported ion species across the apical membrane; the voltagedriven inward current transfers water by electroosmosis against its chemical potential from the extracellular space into the cytoplasm. Voltage and current measurements and synchronous measurements of water flow across the epithelium of the posterior rectum ofLepisma saccharina strongly corroborate this hypothesis. The transepithelial voltage is up to 200 mV (lumen positive); the short-circuit current averages 200 A per cm2 of the epithelium. Both depend acutely on oxidative metabolism as does spontaneous water uptake. Exogenous transepithelial current (I) induces, independently of anoxia, a proportional change in volume flow (J
v). The induced flow has the direction of the cation flow. Its mean coupling ratio (J
v/I) is 1.5×10–9m3/A·sec corresponding to 7 to 8 H2O per positive unit charge. Critical evaluation of experimental data reveals that water uptake by electroosmosis may quantitatively account forin vivo performance without requiring any unusual assumption. 相似文献
2.
3.
Membrane structural perturbations caused by anesthetics and nonimmobilizers: a molecular dynamics investigation.
下载免费PDF全文
![点击此处可从《Biophysical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The structural perturbations of the fully hydrated dimyristoyl-phosphatidylcholine bilayer induced by the presence of hexafluoroethane C(2F6), a "nonimmobilizer," have been examined by molecular dynamics simulations and compared with the effects produced by halothane CF3CHBrCl, an "anesthetic," on a similar bilayer (DPPC) (Koubi et al., Biophys. J. 2000. 78:800). We find that the overall structure of the lipid bilayer and the zwitterionic head-group dipole orientation undergo only a slight modification compared with the pure lipid bilayer, with virtually no change in the potential across the interface. This is in contrast to the anesthetic case in which the presence of the molecule led to a large perturbation of the electrostatic potential across to the membrane interface. Similarly, the analysis of the structural and dynamical properties of the lipid core are unchanged in the presence of the nonimmobilizer although there is a substantial increase in the microscopic viscosity for the system containing the anesthetic. These contrasting perturbations of the lipid membrane caused by those quite similarly sized molecules may explain the difference in their physiological effects as anesthetics and nonimmobilizers, respectively. 相似文献
4.
The folding process of trpzip2 beta-hairpin is studied by the replica exchange molecular dynamics (REMD) and normal MD simulations, aiming to understand the folding mechanism of this unique small, stable, and fast folder, as well as to reveal the general principles in the folding of beta-hairpins. According to our simulations, the TS ensemble is mainly characterized by a largely formed turn and the interaction between the inner pair of hydrophobic core residues. The folding is a zipping up of hydrogen bonds. However, the nascent turn has to be stabilized by the partially formed hydrophobic core to cross the TS. Thus our folding picture is in essence a blend of hydrogen bond-centric and hydrophobic core-centric mechanism. Our simulations provide a direct evidence for a very recent experiment (Du et al., Proc Natl Acad Sci USA 2004;101:15915-15920), which suggests that the turn formation is the rate-limiting step for beta-hairpin folding and the unfolding is mainly determined by the hydrophobic interactions. Besides, the relationship between hydrogen bond stabilities and their relative importance in folding are investigated. It is found that the hydrogen bonds with higher stabilities need not play more important roles in the folding process, and vice versa. 相似文献
5.
The mammalian 70-kilodalton heat shock cognate protein (Hsc70) is an abundant, cytosolic molecular chaperone whose interactions with protein substrates are regulated by ATP hydrolysis. In vitro, purified Hsc70 was found to have a slow, intrinsic ATPase activity in the absence of protein substrates. The addition of an unfolded protein such as apocytochrome c stimulated ATP hydrolysis 2-3-fold. In contrast, the native holoprotein, cytochrome c, did not stimulate the ATPase rate, in accord with recent observations that 70-kilodalton heat shock proteins interact selectively with unfolded proteins. Stimulation of ATP hydrolysis by apocytochrome c was due to an increase in the Vmax, with no effect on the Km for ATP. Following hydrolysis of [3H]ATP, a relatively stable [3H]ADP.Hsc70 complex was formed. Release of [3H]ADP from Hsc70 was most efficient in the presence of other nucleotides such as ADP or ATP, suggesting that ADP release occurs as an ADP/ATP exchange reaction. The loss of radiolabeled ADP from Hsc70 in the presence of exogenous nucleotides followed first-order kinetics. In the presence of nucleotides, apocytochrome c induced a 2-fold increase in the rate of ADP release from Hsc70. Moreover, rate constants of the nucleotide exchange reaction measured in the absence and presence of apocytochrome c (0.16 and 0.34 min-1, respectively) closely matched the kcat values derived from ATP hydrolysis measurements (0.15 and 0.38 min-1, respectively). The results suggest that ADP release in a rate-limiting step in the Hsc70 ATPase reaction and that unfolded proteins stimulate ATP hydrolysis by accelerating the rate of ADP/ATP exchange. 相似文献
6.
Molecular dynamics simulations of membrane proteins are making rapid progress, because of new high-resolution structures, advances in computer hardware and atomistic simulation algorithms, and the recent introduction of coarse-grained models for membranes and proteins. In addition to several large ion channel simulations, recent studies have explored how individual amino acids interact with the bilayer or snorkel/anchor to the headgroup region, and it has been possible to calculate water/membrane partition free energies. This has resulted in a view of bilayers as being adaptive rather than purely hydrophobic solvents, with important implications, for example, for interaction between lipids and arginines in the charged S4 helix of voltage-gated ion channels. However, several studies indicate that the typical current simulations fall short of exhaustive sampling, and that even simple protein-membrane interactions require at least ca. 1mus to fully sample their dynamics. One new way this is being addressed is coarse-grained models that enable mesoscopic simulations on multi-mus scale. These have been used to model interactions, self-assembly and membrane perturbations induced by proteins. While they cannot replace all-atom simulations, they are a potentially useful technique for initial insertion, placement, and low-resolution refinement. 相似文献
7.
Aranovich A Gdalevsky GY Cohen-Luria R Fishov I Parola AH 《The Journal of biological chemistry》2006,281(18):12526-12534
DnaA is the initiator protein for chromosomal replication in bacteria; its activity plays a central role in the timing of the primary initiations within the Escherichia coli cell cycle. A controlled, reversible conversion between the active ATP-DnaA and the inactive ADP forms modulates this activity. In a DNA-dependent manner, bound ATP is hydrolyzed to ADP. Acidic phospholipids with unsaturated fatty acids are capable of reactivating ADP-DnaA by promoting the release of the tightly bound ADP. The nucleotide dissociation kinetics, measured in the present study with the fluorescent derivative 3'-O-(N-methylantraniloyl)-5'-adenosine triphosphate, was dependent on the density of DnaA on the membrane in a cooperative manner: it increased 5-fold with decreased protein density. At all surface densities the nucleotide was completely released, presumably due to protein exchange on the membrane. Distinct temperature dependences and the effect of the crowding agent Ficoll suggest that two functional states of DnaA exist at high and low membrane occupancy, ascribed to local macromolecular crowding on the membrane surface. These novel phenomena are thought to play a major role in the mechanism regulating the initiation of chromosomal replication in bacteria. 相似文献
8.
Tarek M 《Biophysical journal》2005,88(6):4045-4053
We present results of molecular dynamics simulations of lipid bilayers under a high transverse electrical field aimed at investigating their electroporation. Several systems are studied, namely 1), a bare bilayer, 2), a bilayer containing a peptide nanotube channel, and 3), a system with a peripheral DNA double strand. In all systems, the applied transmembrane electric fields (0.5 V.nm(-1) and 1.0 V.nm(-1)) induce an electroporation of the lipid bilayer manifested by the formation of water wires and water channels across the membrane. The internal structures of the peptide nanotube assembly and that of the DNA strand are hardly modified under field. For system 2, no perturbation of the membrane is witnessed at the vicinity of the channel, which indicates that the interactions of the peptide with the nearby lipids stabilize the bilayer. For system 3, the DNA strand migrates to the interior of the membrane only after electroporation. Interestingly enough, switching of the external transmembrane potential in cases 1 and 2 for few nanoseconds is enough to allow for complete resealing and reconstitution of the bilayer. We provide evidence that the electric field induces a significant lateral stress on the bilayer, manifested by surface tensions of magnitudes in the order of 1 mN.m(-1). This study is believed to capture the essence of several dynamical phenomena observed experimentally and provides a framework for further developments and for new applications. 相似文献
9.
Lísal J Lam TT Kainov DE Emmett MR Marshall AG Tuma R 《Nature structural & molecular biology》2005,12(5):460-466
Molecular motors undergo cyclical conformational changes and convert chemical energy into mechanical work. The conformational dynamics of a viral packaging motor, the hexameric helicase P4 of dsRNA bacteriophage phi8, was visualized by hydrogen-deuterium exchange and high-resolution mass spectrometry. Concerted changes of exchange kinetics revealed a cooperative unit that dynamically links ATP-binding sites and the central RNA-binding channel. The cooperative unit is compatible with a structure-based model in which translocation is mediated by a swiveling helix. Deuterium labeling also revealed the transition state associated with RNA loading, which proceeds via opening of the hexameric ring. The loading mechanism is similar to that of other hexameric helicases. Hydrogen-deuterium exchange provides an important link between time-resolved spectroscopic observations and high-resolution structural snapshots of molecular machines. 相似文献
10.
A number of studies have concluded that strand exchange between a RecA-complexed DNA single strand and a homologous DNA duplex occurs via a single-strand invasion of the minor groove of the duplex. Using molecular modeling, we have previously demonstrated the possibility of forming a parallel triple helix in which the single strand interacts with the intact duplex in the minor groove, via novel base interactions (Bertucat et al., J. Biomol. Struct. Dynam. 16:535-546). This triplex is stabilized by the stretching and unwinding imposed by RecA. In the present study, we show that the bases within this triplex are appropriately placed to undergo strand exchange. Strand exchange is found to be exothermic and to result in a triple helix in which the new single strand occupies the major groove. This structure, which can be equated to so-called R-form DNA, can be further stabilized by compression and rewinding. We are consequently able to propose a detailed, atomic-scale model of RecA-promoted strand exchange. This model, which is supported by a variety of experimental data, suggests that the role of RecA is principally to prepare the single strand for its future interactions, to guide a minor groove attack on duplex DNA, and to stabilize the resulting, stretched triplex, which intrinsically favors strand exchange. We also discuss how this mechanism can incorporate homologous recognition. 相似文献
11.
《Structure (London, England : 1993)》2023,31(3):221-226
- Download : Download high-res image (157KB)
- Download : Download full-size image
12.
Wong TC 《Biochimica et biophysica acta》2003,1609(1):45-54
In this work, molecular dynamics (MD) simulation of the interaction of three mutants, G3V, G5V and G10V, of the human immunodeficiency virus (HIV) gp41 16-residue fusion peptide (FP) with an explicit palmitoyloleoylphosphatidyl-ethanolamine (POPE) lipid bilayer was performed. The goals of this work are to study the correlation of the fusogenic activity of the FPs with the mode of their interaction with the bilayer and to examine the roles of the many glycine residues in the FP in the fusion process. The results of this work corroborate the main conclusion of our earlier MD work of the WT FP and several mutants with polar substitution. These two studies provide correlation between the mode of insertion and the fusogenic activity of these peptides and support the hypothesis that an oblique insertion of the fusion domain of the viral protein is required for fusogenic activity. Inactive mutants interact with the bilayer by a surface-binding mode. The results of this work, combined with the results of our earlier work, show that, while the secondary structures of the wild-type FP and its mutants do not affect the fusogenic activities, the conformational flexibility appears to be an important factor. The active WT FP and its partially active mutants, G3V and G5V, all have significant conformational transitions at one of the glycine sites. They occur at Gly(5) in FP-wt, at Gly(10) in FP-G5V and at Gly(13) in FP-G3V. Thus, a glycine site in each of these active (or partially active) FPs provides conformational flexibility. On the other hand, the inactive mutants FP-G10V, FP-L9R and FP-V2E do not have any conformational transitions except at either terminus and thus possess no conformational flexibility. Thus, the results of this work support the suggestion that the role of glycine residues in the fusion domain is to provide the necessary conformational flexibility for fusion activity.The glycines also form a "glycine strip" in the FP that locates on one (the less hydrophobic) face of the helix (the "sided helix"). However, whether this "glycine strip" is disrupted or not does not seem to correlate with the retention of fusogenic activities. Finally, although the FLGFL (8-12) motif is absolutely conserved in the HIV fusion domain, a well-structured motif stabilized by hydrogen bonding does not appear to be required for activity. In fact, hydrogen bonding in this motif was found to be missing in FP-G3V and FP-G5V. Both of these mutants are partially active. 相似文献
13.
Membrane channel formation by antimicrobial protegrins. 总被引:6,自引:0,他引:6
Y Sokolov T Mirzabekov D W Martin R I Lehrer B L Kagan 《Biochimica et biophysica acta》1999,1420(1-2):23-29
Protegrins are small, arginine- and cysteine-rich, beta-sheet peptides with potent activity against bacteria, fungi, and certain enveloped viruses. We report that protegrins form weakly anion-selective channels in planar phospholipid bilayers, induce potassium leakage from liposomes and form moderately cation-selective channels in planar lipid membranes that contain bacterial lipopolysaccharide. The disruption of microbial membranes may be a central attribute related to the host defense properties of protegrins. 相似文献
14.
Jiraphorn Phanich Siraphob Threeracheep Nawee Kungwan Supot Hannongbua 《Journal of biomolecular structure & dynamics》2019,37(13):3354-3365
Two important glycoproteins on the influenza virus membrane, hemagglutinin (HA) and neuraminidase (NA), are relevant to virus replication. As previously reported, HA has a substrate specificity towards SIA-2,3-GAL-1,4-NAG (3SL) and SIA-2,6-GAL-1,4-NAG (6SL) glycans, while NA can cleave both types of linkages. However, the substrate binding into NA and its preference are not well understood. In this work, the glycan binding and specificity of human and avian NAs were evaluated by classical molecular dynamics (MD) simulations, whilst the conformational diversity of 3SL avian and 6SL human glycans in an unbound state was investigated by replica exchange MD simulations. The results indicated that the 3SL avian receptor fits well in the binding cavity of all NAs and does not require a conformational change for such binding compared to the flexible shape of the 6SL human receptor. From the QM/MM-GBSA binding free energy and decomposition free energy data, 6SL showed a much stronger binding towards human NAs (H1N1, H2N2 and H3N2) than to avian NAs (H5N1 and H7N9). This suggests that influenza NAs have a substrate specificity corresponding to their HA, indicating the functional balance between the two important glycoproteins. Both linkages show distinct glycan topologies when complexed with NAs, while the flexibility of torsion angles between GAL and NAG in 6SL results in the various shapes of glycan and different binding patterns. Lower conformational diversities of both glycans when bound to NA compared to the unbound state were found, and were required in order to be accommodated within the NA cavity.
Communicated by Ramaswamy H. Sarma 相似文献
15.
Ghader Hosseinzadeh S. Morteza F. Farnia Ali A. Moosavi-Movahedi 《Journal of biomolecular structure & dynamics》2013,31(14):3623-3635
The interaction of ZnO nanoparticles with biological molecules such as proteins is one of the most important and challenging problems in molecular biology. Molecular dynamics (MD) simulations are useful technique for understating the mechanism of various interactions of proteins and nanoparticles. In the present work, the interaction mechanism of insulin with ZnO nanoparticles was studied. Simulation methods including MD and replica exchange molecular dynamics (REMD) and their conditions were surveyed. According to the results obtained by REMD simulation, it was found that insulin interacts with ZnO nanoparticle surface via its polar and charged amino acids. Unfolding insulin at ZnO nanoparticle surface, the terminal parts of its chains play the main role. Due to the linkage between chain of insulin and chain of disulfide bonds, opposite directional movements of N terminal part of chain A (toward nanoparticle surface) and N termini of chain B (toward solution) make insulin unfolding. In unfolding of insulin at this condition, its helix structures convert to random coils at terminal parts chains. 相似文献
16.
Expanded molecular diversity generation during directed evolution by trinucleotide exchange (TriNEx)
Trinucleotide exchange (TriNEx) is a method for generating novel molecular diversity during directed evolution by random substitution of one contiguous trinucleotide sequence for another. Single trinucleotide sequences were deleted at random positions in a target gene using the engineered transposon MuDel that were subsequently replaced with a randomized trinucleotide sequence donated by the DNA cassette termed SubSeq(NNN). The bla gene encoding TEM-1 beta-lactamase was used as a model to demonstrate the effectiveness of TriNEx. Sequence analysis revealed that the mutations were distributed throughout bla, with variants containing single, double and triple nucleotide changes. Many of the resulting amino acid substitutions had significant effects on the in vivo activity of TEM-1, including up to a 64-fold increased activity toward ceftazidime and up to an 8-fold increased resistance to the inhibitor clavulanate. Many of the observed amino acid substitutions were only accessible by exchanging at least two nucleotides per codon, including charge-switch (R164D) and aromatic substitution (W165Y) mutations. TriNEx can therefore generate a diverse range of protein variants with altered properties by combining the power of site-directed saturation mutagenesis with the capacity of whole-gene mutagenesis to randomly introduce mutations throughout a gene. 相似文献
17.
Rose RJ Welsh TS Waksman G Ashcroft AE Radford SE Paci E 《Journal of molecular biology》2008,375(4):908-919
Adhesive multi-subunit fibres are assembled on the surface of many pathogenic bacteria via the chaperone-usher pathway. In the periplasm, a chaperone donates a β-strand to a pilus subunit to complement its incomplete immunoglobulin-like fold. At the outer membrane, this is replaced with a β-strand formed from the N-terminal extension (Nte) of an incoming pilus subunit by a donor-strand exchange (DSE) mechanism. This reaction has previously been shown to proceed via a concerted mechanism, in which the Nte interacts with the chaperone:subunit complex before the chaperone has been displaced, forming a ternary intermediate. Thereafter, the pilus and chaperone β-strands have been postulated to undergo a strand swap by a ‘zip-in-zip-out’ mechanism, whereby the chaperone strand zips out, residue by residue, as the Nte simultaneously zips in, although direct experimental evidence for a zippering mechanism is still lacking. Here, molecular dynamics simulations have been used to probe the DSE mechanism during formation of the Saf pilus from Salmonella enterica at the atomic level, allowing the direct investigation of the zip-in-zip-out hypothesis. The simulations provide an explanation of how the incoming Nte is able to dock and initiate DSE due to inherent dynamic fluctuations within the chaperone:subunit complex. In the simulations, the chaperone donor strand was seen to unbind from the pilus subunit, residue by residue, in direct support of the zip-in-zip-out hypothesis. In addition, an interaction of a residue towards the N-terminus of the Nte with a specific binding pocket (P*) on the adjacent pilus subunit was seen to stabilise the DSE product against unbinding, which also proceeded in the simulations by a zippering mechanism. Together, the study provides an in-depth picture of DSE, including the first atomistic insights into the molecular events occurring during the zip-in-zip-out mechanism. 相似文献
18.
Membrane fusion and molecular segregation in phospholipid vesicles 总被引:13,自引:0,他引:13
19.
Replica exchange molecular dynamics (MD) simulations of Met-enkephalin in explicit solvent reveal helical and nonhelical structures. Four predominant structures of Met-enkephalin are sampled with comparable probabilities (two helical and two nonhelical). The energy barriers between these configurations are low, suggesting that Met-enkephalin switches easily between configurations. This is consistent with the requirement that Met-enkephalin be sufficiently flexible to bind to several different receptors. Replica exchange simulations of 32 ns are shown to sample approximately five times more configurational space than constant temperature MD simulations of the same duration. The energy landscape for the replica exchange simulation is presented. A detailed study of replica trajectories demonstrates that the significant increases in temperature provided by the replica exchange technique enable transitions from nonhelical to helical structures that would otherwise be prevented by kinetic trapping. Met-enkephalin (Type Entrez Proteins; Value A61445; Service Entrez Proteins). 相似文献
20.
Hydrogen-deuterium exchange reactions catalysed by nitrogenase. 总被引:2,自引:1,他引:1
M Kelly 《The Biochemical journal》1968,109(2):322-324