首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O-acetylserine sulfhydrylase (OASS) catalyzes the synthesis of l-cysteine in the last step of the reductive sulfate assimilation pathway in microorganisms. Its activity is inhibited by the interaction with serine acetyltransferase (SAT), the preceding enzyme in the metabolic pathway. Inhibition is exerted by the insertion of SAT C-terminal peptide into the OASS active site. This action is effective only on the A isozyme, the prevalent form in enteric bacteria under aerobic conditions, but not on the B-isozyme, the form expressed under anaerobic conditions. We have investigated the active site determinants that modulate the interaction specificity by comparing the binding affinity of thirteen pentapeptides, derived from the C-terminal sequences of SAT of the closely related species Haemophilus influenzae and Salmonella typhimurium, towards the corresponding OASS-A, and towards S. typhimurium OASS-B. We have found that subtle changes in protein active sites have profound effects on protein–peptide recognition. Furthermore, affinity is strongly dependent on the pentapeptide sequence, signaling the relevance of P3–P4–P5 for the strength of binding, and P1–P2 mainly for specificity. The presence of an aromatic residue at P3 results in high affinity peptides with Kdiss in the micromolar and submicromolar range, regardless of the species. An acidic residue, like aspartate at P4, further strengthens the interaction and results in the higher affinity ligand of S. typhimurium OASS-A described to date. Since OASS knocked-out bacteria exhibit a significantly decreased fitness, this investigation provides key information for the development of selective OASS inhibitors, potentially useful as novel antibiotic agents.  相似文献   

2.
Aeropyrum pernix K1 is a strictly aerobic and hyperthermophilic archaeon that thrives even at 100 degrees C. The archaeon is quite interesting with respect to the evolution of aerobic electron transport systems and the thermal stability of the respiratory components. An isolated membrane fraction was found to oxidize bovine cytochrome c.The activity was solubilized in the presence of detergents and separated into two fractions by successive chromatography. Two cytochrome oxidases, designated as CO-1 and CO-2, were further purified. CO-1 was a ba(3)-type cytochrome containing at least two subunits. Chemically digested fragments of CO-1 revealed a peptide with a sequence identical to a part of a putative cytochrome oxidase subunit I encoded by the gene ape1623. CO-2, an aa(3)-type cytochrome, was present in lower amounts than CO-1 and was immunologically identified as a product of aoxABC gene (DDBJ accession no. AB020482). Both cytochromes reacted with carbon monoxide. The apparent K(m) values of CO-1 and CO-2 for oxygen were 5.5 and 32 micro M, respectively, at 25 degrees C. The terminal oxidases CO-1 and CO-2 phylogenetically correspond to the SoxB and SoxM branches, respectively, of the heme-copper oxidase tree.  相似文献   

3.
The formation of disulfide bonds between cysteine residues is a rate-limiting step in protein folding. To control this oxidative process, different organisms have developed different systems. In bacteria, disulfide bond formation is assisted by the Dsb protein family; in eukarya, disulfide bond formation and rearrangement are catalyzed by PDI. In thermophilic organisms, a potential key role in disulfide bond formation has recently been ascribed to a new cytosolic Protein Disulphide Oxidoreductase family whose members have a molecular mass of about 26 kDa and are characterized by two thioredoxin folds comprising a CXXC active site motif each. Here we report on the functional and structural characterization of ApPDO, a new member of this family, which was isolated from the archaeon Aeropyrum pernix K1. Functional studies have revealed that ApPDO can catalyze the reduction, oxidation and isomerization of disulfide bridges. Structural studies have shown that this protein has two CXXC active sites with fairly similar geometrical parameters typical of a stable conformation. Finally, a theoretical calculation of the cysteine pK(a) values has suggested that the two active sites have similar functional properties and each of them can impart activity to the enzyme. Our results are evidence of functional similarity between the members of the Protein Disulphide Oxidoreductase family and the eukaryotic enzyme PDI. However, as the different three-dimensional features of these two biological systems strongly suggest significantly different mechanisms of action, further experimental studies will be needed to make clear how different three-dimensional structures can result in systems with similar functional behavior.  相似文献   

4.
A transcarbamylase-like protein essential for arginine biosynthesis in the anaerobic bacterium Bacteroides fragilis has been purified and crystallized in space group P4(3)2(1)2 (a=b=153.4 A, c=94.8 A). The structure was solved using a single isomorphous replacement with anomalous scattering (SIRAS) and was refined at 2.0 A resolution to an R-factor of 20.6% (R-free=25.2%). The molecular model is trimeric and comprises 960 amino acid residues, two phosphate groups and 422 water molecules. The monomer has the consensus transcarbamylase fold with two structural domains linked by two long interdomain helices: the putative carbamoyl phosphate-binding domain and a binding domain for the second substrate. Each domain has a central parallel beta-sheet surrounded by alpha-helices and loops with alpha/beta topology. The putative carbamoyl phosphate-binding site is similar to those in ornithine transcarbamylases (OTCases) and aspartate transcarbamylases (ATCases); however, the second substrate-binding site is strikingly different. This site has several insertions and deletions, and residues critical to substrate binding and catalysis in other known transcarbamylases are not conserved. The three-dimensional structure and the fact that this protein is essential for arginine biosynthesis suggest strongly that it is a new member of the transcarbamylase family. A similar protein has been found in Xylella fastidiosa, a bacterium that infects grapes, citrus and other plants.  相似文献   

5.
O-Acetylserine sulfhydrylase catalyzes the final step of the biosynthesis of l-cysteine, the replacement of the β-acetoxy group of O-acetyl-l-serine (OAS) by a thiol. The 5′-phosphate of the PLP cofactor is very tightly bound to the enzyme; it accepts 8 hydrogen bonds from enzyme side chains and a pair of water molecules, and is in close proximity to a helix dipole. Histidine-152 (H152) is one of the residues that, via a water molecule, is responsible for positioning the 5′-phosphate. Mutation of H152 to alanine was predicted to increase the freedom of the 5′-phosphate, and as a result the cofactor, giving a decrease in the overall rate of the reaction. The H152A mutant enzyme was thus prepared and characterized by UV-visible absorbance, fluorescence, visible CD, and 31P NMR spectral studies, as well as steady state and pre-steady state kinetic studies. UV-visible absorbance and visible CD spectra are consistent with a shift in the ketoeneamine to enolimine tautomeric equilibrium toward the neutral enolimine in the internal Schiff base of the free enzyme (ISB), the amino acid external Schiff base (ESB), and the α-aminoacrylate intermediate (AA). 31P NMR spectra clearly indicate the presence of two conformers (presumably open and closed forms of the enzyme) that interconvert slowly on the NMR time scale in the ISB and ESB. Kinetic data suggest the decreased rate of the enzyme likely reflects a decrease in the amount of active enzyme as a result of an increased flexibility of the cofactor which results in substantial nonproductive binding of OAS in its external Schiff base, and a stabilization of the external Schiff bases of OAS and S-carboxynitrophenyl-l-cysteine. The nonproductive binding and stabilization of the external Schiff bases are thus linked to the shift in the tautomeric equilibrium and increase in the rate of interconversion of the open and closed forms of the enzyme. The location of the 5′-phosphate in the cofactor-binding site determines additional interactions between the cofactor and enzyme in the closed (ESB) form of the enzyme, consistent with an increased rate of interconversion of the open and closed forms of the enzyme upon increasing the rate of flexibility of the cofactor.  相似文献   

6.
The thermophilic bacterium Thermus thermophilus synthesizes lysine through the alpha-aminoadipate pathway, which uses alpha-aminoadipate as a biosynthetic intermediate of lysine. LysX is the essential enzyme in this pathway, and is believed to catalyze the acylation of alpha-aminoadipate. We have determined the crystal structures of LysX and its complex with ADP at 2.0A and 2.38A resolutions, respectively. LysX is composed of three alpha+beta domains, each composed of a four to five-stranded beta-sheet core flanked by alpha-helices. The C-terminal and central domains form an ATP-grasp fold, which is responsible for ATP binding. LysX has two flexible loop regions, which are expected to play an important role in substrate binding and protection. In spite of the low level of sequence identity, the overall fold of LysX is surprisingly similar to that of other ATP-grasp fold proteins, such as D-Ala:D-Ala ligase, PurT-encoded glycinamide ribonucleotide transformylase, glutathione synthetase, and synapsin I. In particular, they share a similar spatial arrangement of the amino acid residues around the ATP-binding site. This observation strongly suggests that LysX is an ATP-utilizing enzyme that shares a common evolutionary ancestor with other ATP-grasp fold proteins possessing a carboxylate-amine/thiol ligase activity.  相似文献   

7.
In response to stressful conditions like supra-optimal salinity in the growth medium or temperature, many microorganisms accumulate low-molecular-mass organic compounds known as compatible solutes. In contrast with mesophiles that accumulate neutral or zwitterionic compounds, the solutes of hyperthermophiles are typically negatively charged. (2R)-2-(α-d-Mannopyranosyl)glycerate (herein abbreviated as mannosylglycerate) is one of the most widespread solutes among thermophilic and hyperthermophilic prokaryotes. In this work, several molecules chemically related to mannosylglycerate were synthesized, namely (2S)-2-(1-O-α-d-mannopyranosyl)propionate, 2-(1-O-α-d-mannopyranosyl)acetate, (2R)-2-(1-O-α-d-glucopyranosyl)glycerate and 1-O-(2-glyceryl)-α-d-mannopyranoside. The effectiveness of the newly synthesized compounds for the protection of model enzymes against heat-induced denaturation, aggregation and inactivation was evaluated, using differential scanning calorimetry, light scattering and measurements of residual activity. For comparison, the protection induced by natural compatible solutes, either neutral (e.g., trehalose, glycerol, ectoine) or negatively charged (di-myo-inositol-1,3′-phosphate and diglycerol phosphate), was assessed. Phosphate, sulfate, acetate and KCl were also included in the assays to rank the solutes and new compounds in the Hofmeister series. The data demonstrate the superiority of charged organic solutes as thermo-stabilizers of enzymes and strongly support the view that the extent of protein stabilization rendered by those solutes depends clearly on the specific solute/enzyme examined. The relevance of these findings to our knowledge on the mode of action of charged solutes is discussed.  相似文献   

8.
In the ancient organisms, methanogenic archaea, lacking the canonical cysteinyl-tRNA synthetase, Cys-tRNA(Cys) is produced by an indirect pathway, in which O-phosphoseryl-tRNA synthetase ligates O-phosphoserine (Sep) to tRNA(Cys) and Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). In this study, the crystal structure of SepCysS from Archaeoglobus fulgidus has been determined at 2.4 A resolution. SepCysS forms a dimer, composed of monomers bearing large and small domains. The large domain harbors the seven-stranded beta-sheet, which is typical of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. In the active site, which is located near the dimer interface, PLP is covalently bound to the side-chain of the conserved Lys209. In the proximity of PLP, a sulfate ion is bound by the side-chains of the conserved Arg79, His103, and Tyr104 residues. The active site is located deep within the large, basic cleft to accommodate Sep-tRNA(Cys). On the basis of the surface electrostatic potential, the amino acid residue conservation mapping, the position of the bound sulfate ion, and the substrate amino acid binding manner in other PLP-dependent enzymes, a binding model of Sep-tRNA(Cys) to SepCysS was constructed. One of the three strictly conserved Cys residues (Cys39, Cys42, or Cys247), of one subunit may play a crucial role in the catalysis in the active site of the other subunit.  相似文献   

9.
Plants and bacteria assimilate and incorporate inorganic sulfur into organic compounds such as the amino acid cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase (CS) complex. The CS complex is composed of the enzymes serine acetyl transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL). Although it is experimentally known that formation of the CS complex influences cysteine production, the exact biological function of the CS complex, the mechanism of reciprocal regulation of the constituent enzymes and the structure of the complex are still poorly understood. Here, we used docking techniques to construct a model of the CS complex from mitochondrial Arabidopsis thaliana. The three-dimensional structures of the enzymes were modeled by comparative techniques. The C-termini of SAT, missing in the template structures but crucial for CS formation, were modeled de novo. Diffusional encounter complexes of SAT and OAS-TL were generated by rigid-body Brownian dynamics simulation. By incorporating experimental constraints during Brownian dynamics simulation, we identified complexes consistent with experiments. Selected encounter complexes were refined by molecular dynamics simulation to generate structures of bound complexes. We found that although a stoichiometric ratio of six OAS-TL dimers to one SAT hexamer in the CS complex is geometrically possible, binding energy calculations suggest that, consistent with experiments, a ratio of only two OAS-TL dimers to one SAT hexamer is more likely. Computational mutagenesis of residues in OAS-TL that are experimentally significant for CS formation hindered the association of the enzymes due to a less-favorable electrostatic binding free energy. Since the enzymes from A. thaliana were expressed in Escherichia coli, the cross-species binding of SAT and OAS-TL from E. coli and A. thaliana was explored. The results showed that reduced cysteine production might be due to a cross-binding of A. thaliana OAS-TL with E. coli SAT. The proposed models of the enzymes and their complexes provide mechanistic insights into CS complexation.  相似文献   

10.
The border cells of Drosophila are a model system for coordinated cell migration. Ecdysone signaling has been shown to act as the timing signal to initiate the migration process. Here we find that mutations in phantom (phm), encoding an enzyme in the ecdysone biosynthesis pathway, block border cell migration when the entire follicular epithelium of an egg chamber is mutant, even when the associated germline cells (nurse cells and oocyte) are wild-type. Conversely, mutant germline cells survive and do not affect border cell migration, as long as the surrounding follicle cells are wild-type. Interestingly, even small patches of wild-type follicle cells in a mosaic epithelium are sufficient to allow the production of above-threshold levels of ecdysone to promote border cell migration. The same phenotype is observed with mutations in shade (shd), encoding the last enzyme in the pathway that converts ecdysone to the active 20-hydroxyecdysone. Administration of high 20-hydroxyecdysone titers in the medium can also rescue the border cell migration phenotype in cultured egg chambers with an entirely phm mutant follicular epithelium. These results indicate that in normal oogenesis, the follicle cell epithelium of each individual egg chamber must supply sufficient ecdysone precursors, leading ultimately to high enough levels of mature 20-hydroxyecdysone to the border cells to initiate their migration. Neither the germline, nor the neighboring egg chambers, nor the surrounding hemolymph appear to provide threshold amounts of 20-hydroxyecdysone to do so. This “egg chamber autonomous” ecdysone synthesis constitutes a useful way to regulate the individual maturation of the asynchronous egg chambers present in the Drosophila ovary.  相似文献   

11.
Ma QH  Xu Y 《Biochimie》2008,90(3):515-524
Caffeic acid 3-O-methyltransferase (COMT) catalyzes the multi-step methylation reactions of hydroxylated monomeric lignin precursors, and is believed to occupy a pivotal position in the lignin biosynthetic pathway. A cDNA (TaCM) was identified from wheat and it was found to be expressed constitutively in stem, leaf and root tissues. The deduced amino acid sequence of TaCM showed a high degree of identity with COMT from other plants, particularly in SAM binding motif and the residues responsible for catalytic and substrate specificity. The predicted TaCM three-dimensional structure is very similar with a COMT from alfalfa (MsCOMT), and TaCM protein had high immunoreactive activity with MsCOMT antibody. Kinetic analysis indicated that the recombinant TaCM protein exhibited the highest catalyzing efficiency towards caffeoyl aldehyde and 5-hydroxyconiferaldehyde as substrates, suggesting a pathway leads to S lignin via aldehyde precursors. Authority of TaCM encoding a COMT was confirmed by the expression of antisense TaCM gene in transgenic tobacco which specifically down-regulated the COMT enzyme activity. Lignin analysis showed that the reduction in COMT activity resulted in a marginal decrease in lignin content but sharp reduction in the syringl lignin. Furthermore, the TaCM protein exhibited a strong activity towards ester precursors including caffeoyl-CoA and 5-hydroxyferuloyl-CoA. Our results demonstrate that TaCM is a typical COMT involved in lignin biosynthesis. It also supports the notion, in agreement with a structural analysis, that COMT has a broad substrate preference.  相似文献   

12.
13.
Results have been obtained consistent with the hypothesis that aci tautomers of nitro compounds are precursors of glucosinolates. When dl-[3-14C]phenylalanine and [14C]1-nitro-2-phenylethane were fed to shoots of Tropaeolum majus L., the incorporation of tracer from each compound into benzylglucosinolate was found to be similar. Conversion of 14C from 1-nitro-2-phenylethane into the aglycone moiety of benzyl-glucosinolate was specific. The natural occurrence of 1-nitro-2-phenylethane in T. majus and its formation in this plant from [1-14C]phenylacetaldoxime were demonstrated by gas chromatography and by means of a trapping experiment.  相似文献   

14.
Female sex pheromones are considered to be produced in a "pheromone gland" located in the terminal abdominal segments (8th-10th, TAS) of a moth; however, in many moth species, the cells that produce pheromones have not actually been specified. We investigated cells in the TAS that synthesize pheromones in the adzuki bean borer Ostrinia scapulalis, by locating pheromones and their precursors, and mRNA for Delta11-desaturase, a key enzyme in pheromone biosynthesis. We demonstrated that the pheromone components, (E)-11- and (Z)-11-tetradecenyl acetates, and their fatty acyl precursors were specifically contained in the dorsal part of the TAS. A cDNA (OscaZ/E11) that encodes a Delta11-desaturase was cloned from the TAS. RT-PCR and in situ hybridization unequivocally showed that OscaZ/E11 is specifically expressed in the modified epidermal cells located at the dorsal end of the 8th-9th intersegmental membrane.  相似文献   

15.
Cellulose is one of the most abundant polysaccharides in nature and microorganisms have developed a comprehensive system for enzymatic breakdown of this ubiquitous carbon source, a subject of much interest in the biotechnology industry. Rhodothermus marinus produces a hyperthermostable cellulase, with a temperature optimum of more than 90 degrees C, the structure of which is presented here to 1.8 A resolution. The enzyme has been classified into glycoside hydrolase family 12; this is the first structure of a thermophilic member of this family to have been solved. The beta-jelly roll fold observed has identical topology to those of the two mesophilic members of the family whose structures have been elucidated previously. A Hepes buffer molecule bound in the active site may have triggered a conformational change to an active configuration as the two catalytic residues Glu124 and Glu207, together with dependent residues, are observed in a conformation similar to that seen in the structure of Streptomyces lividans CelB2 complexed with an inhibitor. The structural similarity between this cellulase and the mesophilic enzymes serves to highlight features that may be responsible for its thermostability, chiefly an increase in ion pair number and the considerable stabilisation of a mobile region seen in S. lividans CelB2. Additional aromatic residues in the active site region may also contribute to the difference in thermophilicity.  相似文献   

16.
Alanine racemase (Alr) is an important enzyme that catalyzes the interconversion of L-alanine and D-alanine, an essential building block in the peptidoglycan biosynthesis. For the small size of the Alr active site, its conserved substrate entryway has been proposed as a potential choice for drug design. In this work, we fully analyzed the crystal structures of the native, the D-cycloserine-bound, and four mutants (P219A, E221A, E221K, and E221P) of biosynthetic Alr from Escherichia coli (EcAlr) and studied the potential roles in substrate orientation for the key residues involved in the substrate entryway in conjunction with the enzymatic assays. Structurally, it was discovered that EcAlr is similar to the Pseudomonas aeruginosa catabolic Alr in both overall and active site geometries. Mutation of the conserved negatively charged residue aspartate 164 or glutamate 165 at the substrate entryway could obviously reduce the binding affinity of enzyme against the substrate and decrease the turnover numbers in both D- to L-Ala and L- to D-Ala directions, especially when mutated to lysine with the opposite charge. However, mutation of Pro219 or Glu221 had only negligible or a small influence on the enzymatic activity. Together with the enzymatic and structural investigation results, we thus proposed that the negatively charged residues Asp164 and Glu165 around the substrate entryway play an important role in substrate orientation with cooperation of the positively charged Arg280 and Arg300 on the opposite monomer. Our findings are expected to provide some useful structural information for inhibitor design targeting the substrate entryway of Alr.  相似文献   

17.
During the biosynthesis of heme d1, the essential cofactor of cytochrome cd1 nitrite reductase, the NirE protein catalyzes the methylation of uroporphyrinogen III to precorrin-2 using S-adenosyl-l-methionine (SAM) as the methyl group donor. The crystal structure of Pseudomonas aeruginosa NirE in complex with its substrate uroporphyrinogen III and the reaction by-product S-adenosyl-l-homocysteine (SAH) was solved to 2.0 Å resolution. This represents the first enzyme-substrate complex structure for a SAM-dependent uroporphyrinogen III methyltransferase. The large substrate binds on top of the SAH in a “puckered” conformation in which the two pyrrole rings facing each other point into the same direction either upward or downward. Three arginine residues, a histidine, and a methionine are involved in the coordination of uroporphyrinogen III. Through site-directed mutagenesis of the nirE gene and biochemical characterization of the corresponding NirE variants the amino acid residues Arg-111, Glu-114, and Arg-149 were identified to be involved in NirE catalysis. Based on our structural and biochemical findings, we propose a potential catalytic mechanism for NirE in which the methyl transfer reaction is initiated by an arginine catalyzed proton abstraction from the C-20 position of the substrate.  相似文献   

18.
The essential biosynthetic pathway to l-Lysine in bacteria and plants is an attractive target for the development of new antibiotics or herbicides because it is absent in humans, who must acquire this amino acid in their diet. Plants use a shortcut of a bacterial pathway to l-Lysine in which the pyridoxal-5'-phosphate (PLP)-dependent enzyme ll-diaminopimelate aminotransferase (LL-DAP-AT) transforms l-tetrahydrodipicolinic acid (L-THDP) directly to LL-DAP. In addition, LL-DAP-AT was recently found in Chlamydia sp., suggesting that inhibitors of this enzyme may also be effective against such organisms. In order to understand the mechanism of this enzyme and to assist in the design of inhibitors, the three-dimensional crystal structure of LL-DAP-AT was determined at 1.95 A resolution. The cDNA sequence of LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT) was optimized for expression in bacteria and cloned in Escherichia coli without its leader sequence but with a C-terminal hexahistidine affinity tag to aid protein purification. The structure of AtDAP-AT was determined using the multiple-wavelength anomalous dispersion (MAD) method with a seleno-methionine derivative. AtDAP-AT is active as a homodimer with each subunit having PLP in the active site. It belongs to the family of type I fold PLP-dependent enzymes. Comparison of the active site residues of AtDAP-AT and aspartate aminotransferases revealed that the PLP binding residues in AtDAP-AT are well conserved in both enzymes. However, Glu97* and Asn309* in the active site of AtDAP-AT are not found at similar positions in aspartate aminotransferases, suggesting that specific substrate recognition may require these residues from the other monomer. A malate-bound structure of AtDAP-AT allowed LL-DAP and L-glutamate to be modelled into the active site. These initial three-dimensional structures of LL-DAP-AT provide insight into its substrate specificity and catalytic mechanism.  相似文献   

19.
The unique beta-hydroxyacyl-ACP dehydratase in Plasmodium falciparum, PfFabZ, is involved in fatty acid biosynthesis and catalyzes the dehydration of beta-hydroxy fatty acids linked to acyl carrier protein. The structure was solved by single anomalous dispersion (SAD) phasing using a quick-soaking experiment with potassium iodide and refined to a resolution of 2.1 A. The crystal structure represents the first structure of a Plasmodium beta-hydroxyacyl-ACP dehydratase with broad substrate specificity. The asymmetric unit contains a hexamer that appears as a trimer of dimers. Each dimer shows the known "hot dog" fold that has been observed in only a few other protein structures. Each of the two independent active sites in the dimer is formed by equal contributions from both subunits. The active site is mainly hydrophobic and looks like an L-shaped tunnel. The catalytically important amino acids His 133 and Glu 147' (from the other subunit), together with His98', form the only hydrophilic site in this tunnel. The inner end of the active site tunnel is closed by the phenyl ring of Phe 169, which is located in a flexible, partly visible loop. In order to explain the acceptance of substrates longer than ~C-7, the phenyl ring must move away to open the tunnel. The present structure supports an enzymatic mechanism consisting of an elimination reaction catalyzed by His 133 and Glu147'. 3-decynoyl-N-acetylcysteamine, an inhibitor known to interact with the E. coli dehydratase/isomerase, turned out to interact covalently with PfFabZ. A first model of PfFabZ with this potent inhibitor is presented.  相似文献   

20.
Wang J  Liu X  Liang YH  Li LF  Su XD 《FEBS letters》2008,582(20):2973-2978
Glucosamine-6-phosphate (GlcN6P) N-acetyltransferase 1 (GNA1) is a key enzyme in the pathway toward biosynthesis of UDP-N-acetylglucosamine, an important donor substrate for N-linked glycosylation. GNA1 catalyzes the formation of N-acetylglucosamine-6-phosphate (GlcNAc6P) from acetyl-CoA (AcCoA) and the acceptor substrate GlcN6P. Here, we report crystal structures of human GNA1, including apo GNA1, the GNA1-GlcN6P complex and an E156A mutant. Our work showed that GlcN6P binds to GNA1 without the help of AcCoA binding. Structural analyses and mutagenesis studies have shed lights on the charge distribution in the GlcN6P binding pocket, and an important role for Glu156 in the substrate binding. Hence, these findings have broadened our knowledge of structural features required for the substrate affinity of GNA1. STRUCTURED SUMMARY:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号