首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ryota Iino  Hiroyuki Noji 《BBA》2012,1817(10):1732-1739
F1-ATPase is a rotary motor protein in which 3 catalytic β-subunits in a stator α3β3 ring undergo unidirectional and cooperative conformational changes to rotate the rotor γ-subunit upon adenosine triphosphate hydrolysis. The prevailing view of the mechanism behind this rotary catalysis elevated the γ-subunit as a “dictator” completely controlling the chemical and conformational states of the 3 catalytic β-subunits. However, our recent observations using high-speed atomic force microscopy clearly revealed that the 3 β-subunits undergo cyclic conformational changes even in the absence of the rotor γ-subunit, thus dethroning it from its dictatorial position. Here, we introduce our results in detail and discuss the possible operating principle behind the F1-ATPase, along with structurally related hexameric ATPases, also mentioning the possibility of generating hybrid nanomotors. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

2.
F(1)-ATPase, a rotary motor powered by adenosine triphosphate hydrolysis, has been extensively studied by various methods. Here, we performed a systematic comparison of 29 X-ray crystal structures of F(1)-complexes, finding fine interplay among enzyme structures, catalysis, and rotations. First, analyzing the 87 structures of enzymatic αβ-subunits, we confirmed that the two modes, the hinge motion of β-subunit and the loose/tight motion of the αβ-interface, dominate the variations. The structural ensemble was nearly contiguous bridging three clusters, αβ(TP), αβ(DP), and αβ(E). Second, the catalytic site analysis suggested the correlation between the phosphate binding and the tightening of the αβ-interface. Third, addressing correlations of enzymatic structures with the orientations of the central stalk γ, we found that the γ rotation highly correlates with loosening of αβ(E)-interface and β(DP) hinge motions. Finally, calculating the helix 6 angle of β, we identified the recently observed partially closed conformation being consistent with β(HC).  相似文献   

3.
ATP hydrolysis by F1-ATPase is strongly inhibited by cationic rhodamines; neutral rhodamines are very poor inhibitors. Rhodamine 6G is a noncompetitive inhibitor of purified F0F1-ATPase and submitochondrial particles, however, an uncompetitive inhibitor of F1-ATPase (KI approximately equal to 2.4 microM for all three enzyme forms). Ethidium bromide is a noncompetitive inhibitor of F0F1-ATPase, submitochondrial particles and also F1-ATPase (KI approximately equal to 270 microM). Neither of the inhibitors affects the negative cooperativity (nH approximately equal to 0.7). The non-identical binding sites for rhodamine 6G and ethidium bromide are located on the F1-moiety and are topologically distinct from the catalytic site. Binding of the inhibitors prevents the conformational changes essential for energy transduction. It is concluded that the inhibitor binding sites are involved in proton translocation. In F1-ATPase, binding of MgATP at a catalytic site causes conformational changes, which allosterically induce the correct structure of the rhodamine 6G binding site. In F0F1-ATPase, this conformation of the F1-moiety exists a priori, due to allosteric interactions with F0-subunits. The binding site for ethidium bromide on F1-ATPase does not require substrate binding at the catalytic site and is not affected by F0F1-subunit interactions.  相似文献   

4.
F1-ATPase is a rotary molecular motor crucial for various cellular functions. In F1-ATPase, the rotation of the gammadeltaepsilon subunits against the hexameric alpha(3)beta(3) subunits is highly coordinative, driven by ATP hydrolysis and structural changes at three beta subunits. However, the dynamical and coordinating structural transitions in the beta subunits are not fully understood at the molecular level. Here we examine structural transitions and domain motions in the active subunits of F1-ATPase via dynamical domain analysis of the alpha(3)beta(3)gammadeltaepsilon complex. The domain movement and hinge axes and bending residues have been identified and determined for various conformational changes of the beta-subunits. P-loop and the ATP-binding pocket are for the first time found to play essential mechanical functions additional to the catalytic roles. The cooperative conformational changes pertaining to the rotary mechanism of F1-ATPase appears to be more complex than Boyer's 'bi-site' activity. These findings provide unique molecular insights into dynamic and cooperative domain motions in F1-ATPase.  相似文献   

5.
Abstract

The pharmacology of native and recombinant GABA-A receptors containing either γ1, γ2 or γ3 subunits has been investigated. The pharmacology of native receptors has been investigated by immunoprecipitating receptors from solubilised preparations of rat brain with antisera specific for individual γ-subunits and analysing their radioligand binding characteristics. Receptors containing a γ1-subunit do not bind benzodiazepine radioligands with high affinity. Those containing either a γ2 or γ3 subunit bind [3H]flumazenil with high affinity. Some compounds compete for these binding sites with multiple affinities, reflecting the presence of populations of receptors containing several different types of α-subunit. Photoaffinity-labelling of GABA-A receptors from a cell line stably expressing GABA-A receptors of composition α1β3γ2 followed by immunoprecipitation of individual subunits revealed that the α and γ but not the β-subunit could be irreversibly labelled by [3H]flunitrazepam.

The properties of recombinant receptors have been investigated in oocytes expressing γ1, γ2, or γ3 subunits in combination with an α and a β-subunit. Some compounds such as zolpidem, DMCM and flunitrazepam show selectivity for receptors containing different γ-subunits. Others such as CL 218,872 show no selectivity between receptors containing different γ-subunits but exhibit selectivity for receptors containing different α-subunits. These data taken together suggest that the benzodiazepine site of the GABA-A receptor is formed with contributions from both the α and γ-subunits.  相似文献   

6.
The first part of this paper is a brief review of works concerned with the mechanisms of functioning of F0F1-ATP synthases. F0F1-ATP syntheses operate as rotating molecular machines that provide the synthesis of ATP from ADP and inorganic phosphate (Pi) in mitochondria, chloroplasts, and bacteria at the expense of the energy of electrochemical gradient of hydrogen ions generated across energy-transducing mitochondrial, chloroplast or, bacterial membranes. A distinguishing feature of these enzymes is that they operate as rotary molecular motors. In the second part of the work, we calculated the contribution of electrostatic interactions between charged groups of a substrate (MgATP), reaction products (MgADP and Pi), and charged amino acid residues of the F1-ATPase molecule to energy changes associated with the binding of ATP and its chemical transformations in the catalytic centers located at the interface of the alpha- and beta-subunits of the enzyme (oligomer complex alpha 3 beta 3 gamma of bovine mitochondrial ATPase). The catalytic cycle of ATP hydrolysis considered in the work includes conformational changes of alpha- and beta-subunits caused by unidirectional rotations of the central gamma-subunit. The results of our calculations are consistent with the idea that the energetically favorable process of ATP binding to the "open" catalytic center of F1-ATPase initiates the rotation of the gamma-subunit followed by ATP hydrolysis in another ("closed") catalytic center of the enzyme.  相似文献   

7.
In Eukarya and Archaea, translation initiation factor 2 (eIF2/aIF2), which contains three subunits (α, β, and γ), is pivotal for binding of charged initiator tRNA to the small ribosomal subunit. The crystal structure of the full-sized heterotrimeric aIF2 from Sulfolobus solfataricus in the nucleotide-free form has been determined at 2.8-Å resolution. Superposition of four molecules in the asymmetric unit of the crystal and the comparison of the obtained structures with the known structures of the aIF2αγ and aIF2βγ heterodimers revealed high conformational flexibility in the α- and β-subunits. In fact, the full-sized aIF2 consists of a rigid central part, formed by the γ-subunit, domain 3 of the α-subunit, and the N-terminal α-helix of the β-subunit, and two mobile “wings,” formed by domains 1 and 2 of the α-subunit, the central part, and the zinc-binding domain of the β-subunit. High structural flexibility of the wings is probably required for interaction of aIF2 with the small ribosomal subunit. Comparative analysis of all known structures of the γ-subunit alone and within the heterodimers and heterotrimers in nucleotide-bound and nucleotide-free states shows that the conformations of switch 1 and switch 2 do not correlate with the assembly or nucleotide states of the protein.  相似文献   

8.
Eukaryotic and archaeal translation initiation factors 2, heterotrimers that consist of α-, β-, and γ-subunits, deliver methionylated initiator tRNA to a small ribosomal subunit in a manner that depends on GTP. To evaluate correlation of the function and association of the subunits, we used isothermal titration calorimetry to analyze the thermodynamics of the interactions between the α- and γ-subunits in the presence or absence of a nonhydrolyzable GTP analog or GDP. The α-subunits bound to the γ-subunit with large heat capacity change (ΔCp) values. The ΔH and ΔCp values for the interaction between the α- and γ-subunits varied in the presence of the GTP analog but not in the presence of GDP. These results suggest that the binding of both the α-subunit and GTP changes the conformation of the switch region of the γ-subunit and increases the affinity of the γ-subunit for tRNA.  相似文献   

9.
GlcNAc-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate, a recognition marker essential for efficient transport of lysosomal hydrolases to lysosomes. The enzyme complex is composed of six subunits (α(2)β(2)γ(2)). The α- and β-subunits are catalytically active, whereas the function of the γ-subunit is still unclear. We have investigated structural properties, localization, and intracellular transport of the human and mouse γ-subunits and the molecular requirements for the assembly of the phosphotransferase complex. The results showed that endogenous and overexpressed γ-subunits were localized in the cis-Golgi apparatus. Secreted forms of γ-subunits were detectable in media of cultured cells as well as in human serum. The γ-subunit contains two in vivo used N-glycosylation sites at positions 88 and 115, equipped with high mannose-type oligosaccharides. (35)S pulse-chase experiments and size exclusion chromatography revealed that the majority of non-glycosylated γ-subunit mutants were integrated in high molecular mass complexes, failed to exit the endoplasmic reticulum (ER), and were rapidly degraded. The substitution of cysteine 245 involved in dimerization of γ-subunits impaired neither ER exit nor trafficking through the secretory pathway. Monomeric γ-subunits failed, however, to associate with other GlcNAc-1-phosphotransferase subunits. The data provide evidence that assembly of the GlcNAc-1-phosphotransferase complex takes place in the ER and requires dimerization of the γ-subunits.  相似文献   

10.
The protein kinase AvrPto-dependent Pto-interacting protein3 (Adi3) is a known suppressor of cell death, and loss of its function has been correlated with cell death induction during the tomato (Solanum lycopersicum) resistance response to its pathogen Pseudomonas syringae pv tomato. However, Adi3 downstream interactors that may play a role in cell death regulation have not been identified. We used a yeast two-hybrid screen to identify the plant SnRK1 (for Sucrose non-Fermenting-1-Related Protein Kinase1) protein as an Adi3-interacting protein. SnRK1 functions as a regulator of carbon metabolism and responses to biotic and abiotic stresses. SnRK1 exists in a heterotrimeric complex with a catalytic α-subunit (SnRK1), a substrate-interacting β-subunit, and a regulatory γ-subunit. Here, we show that Adi3 interacts with, but does not phosphorylate, the SnRK1 α-subunit. The ability of Adi3 to phosphorylate the four identified tomato β-subunits was also examined, and it was found that only the Galactose Metabolism83 (Gal83) β-subunit was phosphorylated by Adi3. This phosphorylation site on Gal83 was identified as serine-26 using a mutational approach and mass spectrometry. In vivo expression of Gal83 indicates that it contains multiple phosphorylation sites, one of which is serine-26. An active SnRK1 complex containing Gal83 as the β-subunit and sucrose nonfermenting4 as the γ-subunit was constructed to examine functional aspects of the Adi3 interaction with SnRK1 and Gal83. These assays revealed that Adi3 is capable of suppressing the kinase activity of the SnRK1 complex through Gal83 phosphorylation plus the interaction with SnRK1 and suggested that this function may be related to the cell death suppression activity of Adi3.  相似文献   

11.
The N-Acetylglucosaminyl-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate (M6P) recognition markers essential for efficient transport of lysosomal hydrolases to lysosomes. The phosphotransferase is composed of six subunits (α2, β2, γ2). The α- and β-subunits are catalytically active and encoded by a single gene, GNPTAB, whereas the γ-subunit encoded by GNPTG is proposed to recognize conformational structures common to lysosomal enzymes. Defects in GNPTG cause mucolipidosis type III gamma, which is characterized by missorting and cellular loss of lysosomal enzymes leading to lysosomal accumulation of storage material. Using plasmon resonance spectrometry, we showed that recombinant γ-subunit failed to bind the lysosomal enzyme arylsulfatase A. Additionally, the overexpression of the γ-subunit in COS7 cells did not result in hypersecretion of newly synthesized lysosomal enzymes expected for competition for binding sites of the endogenous phosphotransferase complex. Analysis of fibroblasts exhibiting a novel mutation in GNPTG (c.619insT, p.K207IfsX7) revealed that the expression of GNPTAB was increased whereas in γ-subunit overexpressing cells the GNPTAB mRNA was reduced. The data suggest that the γ-subunit is important for the balance of phosphotransferase subunits rather for general binding of lysosomal enzymes.  相似文献   

12.
Currently, there are strong inconsistencies in our knowledge of plant heterotrimeric G-proteins that suggest the existence of additional members of the family. We have identified a new Arabidopsis G-protein γ-subunit (AGG3) that modulates morphological development and ABA-regulation of stomatal aperture. AGG3 strongly interacts with the Arabidopsis G-protein β-subunit in vivo and in vitro. Most importantly, AGG3-deficient mutants account for all but one of the 'orphan' phenotypes previously unexplained by the two known γ-subunits in Arabidopsis. AGG3 has unique characteristics never before observed in plant or animal systems, such as its size (more than twice that of canonical γ-subunits) and the presence of a C-terminal Cys-rich domain. AGG3 thus represent a novel class of G-protein γ-subunits, widely spread throughout the plant kingdom but not present in animals. Homologues of AGG3 in rice have been identified as important quantitative trait loci for grain size and yield, but due to the atypical nature of the proteins their identity as G-protein subunits was thus far unknown. Our work demonstrates a similar trend in seeds of Arabidopsis agg3 mutants, and implicates G-proteins in such a crucial agronomic trait. The discovery of this highly atypical subunit reinforces the emerging notion that plant and animal G-proteins have distinct as well as shared evolutionary pathways.  相似文献   

13.
F1-ATPase is an ATP-driven rotary motor that generates torque at the interface between the catalytic β-subunits and the rotor γ-subunit. The β-subunit inwardly rotates the C-terminal domain upon nucleotide binding/dissociation; hence, the region of the C-terminal domain that is in direct contact with γ—termed the DELSEED loop—is thought to play a critical role in torque transmission. We substituted all the DELSEED loop residues with alanine to diminish specific DELSEED loop-γ interactions and with glycine to disrupt the loop structure. All the mutants rotated unidirectionally with kinetic parameters comparable to those of the wild-type F1, suggesting that the specific interactions between DELSEED loop and γ is not involved in cooperative interplays between the catalytic β-subunits. Glycine substitution mutants generated half the torque of the wild-type F1, whereas the alanine mutant generated comparable torque. Fluctuation analyses of the glycine/alanine mutants revealed that the γ-subunit was less tightly held in the α3β3-stator ring of the glycine mutant than in the wild-type F1 and the alanine mutant. Molecular dynamics simulation showed that the DELSEED loop was disordered by the glycine substitution, whereas it formed an α-helix in the alanine mutant. Our results emphasize the importance of loop rigidity for efficient torque transmissions.  相似文献   

14.
The structure of bovine F(1)-ATPase, crystallized in the presence of AMP-PNP and ADP, but in the absence of azide, has been determined at 1.9A resolution. This structure has been compared with the previously described structure of bovine F(1)-ATPase determined at 1.95A resolution with crystals grown under the same conditions but in the presence of azide. The two structures are extremely similar, but they differ in the nucleotides that are bound to the catalytic site in the beta(DP)-subunit. In the present structure, the nucleotide binding sites in the beta(DP)- and beta(TP)-subunits are both occupied by AMP-PNP, whereas in the earlier structure, the beta(TP) site was occupied by AMP-PNP and the beta(DP) site by ADP, where its binding is enhanced by a bound azide ion. Also, the conformation of the side chain of the catalytically important residue, alphaArg-373 differs in the beta(DP)- and beta(TP)-subunits. Thus, the structure with bound azide represents the ADP inhibited state of the enzyme, and the new structure represents a ground state intermediate in the active catalytic cycle of ATP hydrolysis.  相似文献   

15.
F1-ATPase is a catalytic part of the F1Fo-ATP synthase molecular motor. The cooperative hydrolysis of ATP at three catalytic sites of F1-ATPase is accompanied by the rotation of the central γ-subunit inside a cylinder formed by three α-subunits and three β-subunits. Experimental works of different authors have shown that the γ-subunit rotates with irregular dwells. A simple kinetic model suggested in this article provides an explanation as to why dwells occur during the rotation of F1-ATPase. According to this model, rotation dwells happen as a result of deterministic chaos, which in turn occurs at rate constants that are close to those demonstrated experimentally. The time duration of dwells in the model is in agreement with that observed experimentally. Our model explains the known irregular occupancy of catalytic sites of F1-ATPase by nucleotides.  相似文献   

16.
Elastic conformational changes of the protein backbone are essential for catalytic activities of enzymes. To follow relative movements within the protein, F?rster-type resonance energy transfer (FRET) between two specifically attached fluorophores can be applied. FRET provides a precise ruler between 3 and 8nm with subnanometer resolution. Corresponding submillisecond time resolution is sufficient to identify conformational changes in FRET time trajectories. Analyzing single enzymes circumvents the need for synchronization of various conformations. F(O)F(1)-ATP synthase is a rotary double motor which catalyzes the synthesis of adenosine triphosphate (ATP). A proton-driven 10-stepped rotary F(O) motor in the Escherichia coli enzyme is connected to a 3-stepped F(1) motor, where ATP is synthesized. To operate the double motor with a mismatch of step sizes smoothly, elastic deformations within the rotor parts have been proposed by W. Junge and coworkers. Here we extend a single-molecule FRET approach to observe both rotary motors simultaneously in individual F(O)F(1)-ATP synthases at work. We labeled this enzyme with two fluorophores specifically, that is, on the ε- and c-subunits of the two rotors. Alternating laser excitation was used to select the FRET-labeled enzymes. FRET changes indicated associated transient twisting within the rotors of single enzyme molecules during ATP hydrolysis and ATP synthesis. Supported by Monte Carlo simulations of the FRET experiments, these studies reveal that the rotor twisting is greater than 36° and is largely suppressed in the presence of the rotation inhibitor DCCD. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

17.
NMR structures of ζ-subunits, which are recently discovered α-proteobacterial F1F0-ATPase-regulatory proteins representing a Pfam protein family of 246 sequences from 219 species (PF07345), exhibit a four-helix bundle, which is different from all other known F1F0-ATPase inhibitors. Chemical shift mapping reveals a conserved ADP/ATP binding site in ζ-subunit, which mediates long-range conformational changes related to function, as revealed by the structure of the Paracoccus denitrificans ζ-subunit in complex with ADP. These structural data suggest a new mechanism of F1F0-ATPase regulation in α-proteobacteria.  相似文献   

18.
In the crystal structure of mitochondrial F1-ATPase, two beta subunits with a bound Mg-nucleotide are in "closed" conformations, whereas the third beta subunit without bound nucleotide is in an "open" conformation. In this "CCO" (beta-closed beta-closed beta-open) conformational state, Ile-390s of the two closed beta subunits, even though they are separated by an intervening alpha subunit, have a direct contact. We replaced the equivalent Ile of the alpha3beta3gamma subcomplex of thermophilic F1-ATPase with Cys and observed the formation of the beta-beta cross-link through a disulfide bond. The analysis of conditions required for the cross-link formation indicates that: (i) F1-ATPase takes the CCO conformation when two catalytic sites are filled with Mg-nucleotide, (ii) intermediate(s) with the CCO conformation are generated during catalytic cycle, (iii) the Mg-ADP inhibited form is in the CCO conformation, and (iv) F1-ATPase dwells in conformational state(s) other than CCO when only one (or none) of catalytic sites is filled by Mg-nucleotide or when catalytic sites are filled by Mg2+-free nucleotide. The alpha3beta3gamma subcomplex containing the beta-beta cross-link retained the activity of uni-site catalysis but lost that of multiple catalytic turnover, suggesting that open-closed transition of beta subunits is required for the rotation of gamma subunit but not for hydrolysis of a single ATP.  相似文献   

19.
Parathyroid hormone (PTH) inhibits Na(+),K(+)-ATPase activity through protein kinase C- (PKC) and extracellular signal-regulated kinase- (ERK) dependent pathways and increases serine phosphorylation of the alpha(1)-subunit. To determine whether specific serine phosphorylation sites within the Na(+),K(+)-ATPase alpha(1)-subunit are involved in the Na(+),K(+)-ATPase responses to PTH, we examined the effect of PTH in opossum kidney cells stably transfected with wild type rat Na(+),K(+)-ATPase alpha(1)-subunit (WT), serine 11 to alanine mutant alpha(1)-subunit (S11A), or serine 18 to alanine mutant alpha(1)-subunit (S18A). PTH increased phosphorylation and endocytosis of the Na(+),K(+)-ATPase alpha(1)-subunit into clathrin-coated vesicles in cells transfected with WT and S18A rat Na(+),K(+)-ATPase alpha(1)-subunits. PTH did not increase the level of phosphorylation or stimulate translocation of Na(+),K(+)-ATPase alpha(1)-subunits into clathrin-coated vesicles in cells transfected with the S11A mutant. PTH inhibited ouabain-sensitive (86)Rb uptake and Na(+),K(+)-ATPase activity (ouabain-sensitive ATP hydrolysis) in WT- and S18A-transfected opossum kidney cells but not in S11A-transfected cells. Pretreatment of the cells with the PKC inhibitors and ERK inhibitor blocked PTH inhibition of (86)Rb uptake, Na(+),K(+)-ATPase activity, alpha(1)-subunit phosphorylation, and endocytosis in WT and S18A cells. Consistent with the notion that ERK phosphorylates Na(+),K(+)-ATPase alpha(1)-subunit, ERK was shown to be capable of causing phosphorylation of Na(+),K(+)-ATPase alpha(1)-subunit immunoprecipitated from WT and S18A but not from S11A-transfected cells. These results suggest that PTH regulates Na(+),K(+)-ATPase by PKC and ERK-dependent alpha(1)-subunit phosphorylation and that the phosphorylation requires the expression of a serine at the 11 position of the Na(+),K(+)-ATPase alpha(1)-subunit.  相似文献   

20.
We have generated nine monoclonal antibodies against subunits of the maize (Zea mays L.) mitochondrial F1-ATPase. These monoclonal antibodies were generated by immunizing mice against maize mitochondrial fractions and randomly collecting useful hybridomas. To prove that these monoclonal antibodies were directed against ATPase subunits, we tested their cross-reactivity with purified F1-ATPase from pea cotyledon mitochondria. One of the antibodies ([alpha]-ATPaseD) cross-reacted with the pea F1-ATPase [alpha]-subunit and two ([beta]-ATPaseD and [beta]-ATPaseE) cross-reacted with the pea F1-ATPase [beta]-subunit. This established that, of the nine antibodies, four react with the maize [alpha]-ATPase subunit and the other five react with the maize [beta]-ATPase subunit. Most of the monoclonal antibodies cross-react with the F1-ATPase from a wide range of plant species. Each of the four monoclonal antibodies raised against the [alpha]-subunit recognizes a different epitope. Of the five [beta]-subunit antibodies, at least three different epitopes are recognized. Direct incubation of the monoclonal antibodies with the F1-ATPase failed to inhibit the ATPase activity. The monoclonal antibodies [alpha]-ATPaseD and [beta]-ATPaseD were bound to epoxide-glass QuantAffinity beads and incubated with a purified preparation of pea F1-ATPase. The ATPase activity was not inhibited when the antibodies bound the ATPase. The antibodies were used to help map the pea F1-ATPase subunits on a two-dimensional map of whole pea cotyledon mitochondrial protein. In addition, the antibodies have revealed antigenic similarities between various isoforms observed for the [alpha]- and [beta]-subunits of the purified F1-ATPase. The specificity of these monoclonal antibodies, along with their cross-species recognition and their ability to bind the F1-ATPase without inhibiting enzymic function, makes these antibodies useful and invaluable tools for the further purification and characterization of plant mitochondrial F1-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号