共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of comparative genomics on our understanding of evolution 总被引:29,自引:0,他引:29
2.
The past decade has witnessed a revolution in infectious disease research, fuelled by the accumulation of a huge amount of DNA sequence data. The avalanche of genome sequence information has largely promoted the development of comparative genomics, which exploits available genome sequences to perform either inter- or intra-species comparisons of bacterial genome contents, or performs comparisons between the human genome and those of other organisms. This review aims to summarize how comparative genomics is being extensively used in infectious disease research, such as in the studies to identify virulence determinants, antimicrobial drug targets, vaccine candidates and new markers for diagnostics. These applications hold considerable promise for alleviating the burden of infectious diseases in the coming years. 相似文献
3.
Comparative genomics of defense systems in archaea and bacteria 总被引:2,自引:0,他引:2
4.
Hochgeschwender U Brennan MB 《BioEssays : news and reviews in molecular, cellular and developmental biology》1999,21(2):157-163
The benefit of genomics lies in the speeding up of research efforts in other fields of biology, including neurobiology. Through accelerated progress in positional cloning and genetic mapping, genomics has forced us to confront at a much faster pace the difficult problem of defining gene function. Elucidation of the function of identified disease genes and other genes expressed in the Central nervous system has to await conceptual developments in other fields. 相似文献
5.
6.
This article reviews basic concepts,general applications,and the potential impact of next-generation sequencing(NGS)technologies on genomics,with particular reference to currently available and possible future platforms and bioinformatics.NGS technologies have demonstrated the capacity to sequence DNA at unprecedented speed,thereby enabling previously unimaginable scientific achievements and novel biological applications.But,the massive data produced by NGS also presents a significant challenge for data storage,analyses,and management solutions.Advanced bioinformatic tools are essential for the successful application of NGS technology.As evidenced throughout this review,NGS technologies will have a striking impact on genomic research and the entire biological field.With its ability to tackle the unsolved challenges unconquered by previous genomic technologies,NGS is likely to unravel the complexity of the human genome in terms of genetic variations,some of which may be confined to susceptible loci for some common human conditions.The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come. 相似文献
7.
Insertion sequences (ISs) can constitute an important component of prokaryotic (bacterial and archaeal) genomes. Over 1,500 individual ISs are included at present in the ISfinder database (www-is.biotoul.fr), and these represent only a small portion of those in the available prokaryotic genome sequences and those that are being discovered in ongoing sequencing projects. In spite of this diversity, the transposition mechanisms of only a few of these ubiquitous mobile genetic elements are known, and these are all restricted to those present in bacteria. This review presents an overview of ISs within the archaeal kingdom. We first provide a general historical summary of the known properties and behaviors of archaeal ISs. We then consider how transposition might be regulated in some cases by small antisense RNAs and by termination codon readthrough. This is followed by an extensive analysis of the IS content in the sequenced archaeal genomes present in the public databases as of June 2006, which provides an overview of their distribution among the major archaeal classes and species. We show that the diversity of archaeal ISs is very great and comparable to that of bacteria. We compare archaeal ISs to known bacterial ISs and find that most are clearly members of families first described for bacteria. Several cases of lateral gene transfer between bacteria and archaea are clearly documented, notably for methanogenic archaea. However, several archaeal ISs do not have bacterial equivalents but can be grouped into Archaea-specific groups or families. In addition to ISs, we identify and list nonautonomous IS-derived elements, such as miniature inverted-repeat transposable elements. Finally, we present a possible scenario for the evolutionary history of ISs in the Archaea. 相似文献
8.
The discovery of (bacterio)phages revolutionised microbiology and genetics, while phage research has been integral to answering some of the most fundamental biological questions of the twentieth century. The susceptibility of bacteria to bacteriophage attack can be undesirable in some cases, especially in the dairy industry, but can be desirable in others, for example, the use of bacteriophage therapy to eliminate pathogenic bacteria. The relative ease with which entire bacteriophage genome sequences can now be elucidated has had a profound impact on the study of these bacterial parasites. 相似文献
9.
10.
Ahmad Syed Farhan Jehangir Maryam Srikulnath Kornsorn Martins Cesar 《Reviews in Fish Biology and Fisheries》2022,32(2):357-385
Reviews in Fish Biology and Fisheries - The living fishes span a unique and interesting set of animals because of their vast diversity, morphology, ecology, genetics and genomics, and higher... 相似文献
11.
Ben Raymond Denis J. Wright Neil Crickmore Michael B. Bonsall 《Proceedings. Biological sciences / The Royal Society》2013,280(1769)
Pesticide mixtures can reduce the rate at which insects evolve pesticide resistance. However, with live biopesticides such as the naturally abundant pathogen Bacillus thuringiensis (Bt), a range of additional biological considerations might affect the evolution of resistance. These can include ecological interactions in mixed infections, the different rates of transmission post-application and the impact of the native biodiversity on the frequency of mixed infections. Using multi-generation selection experiments, we tested how applications of single and mixed strains of Bt from diverse sources (natural isolates and biopesticides) affected the evolution of resistance in the diamondback moth, Plutella xylostella, to a focal strain. There was no significant difference in the rate of evolution of resistance between single and mixed-strain applications although the latter did result in lower insect populations. The relative survivorship of Bt-resistant genotypes was higher in the mixed-strain treatment, in part owing to elevated mortality of susceptible larvae in mixtures. Resistance evolved more quickly with treatments that contained natural isolates, and biological differences in transmission rate may have contributed to this. Our data indicate that the use of mixtures can have unexpected consequences on the fitness of resistant and susceptible insects. 相似文献
12.
Sequence diversity of Pseudomonas aeruginosa: impact on population structure and genome evolution
下载免费PDF全文

Comparative sequencing of Pseudomonas aeruginosa genes oriC, citS, ampC, oprI, fliC, and pilA in 19 environmental and clinical isolates revealed the sequence diversity to be about 1 order of magnitude lower than in comparable housekeeping genes of Salmonella. In contrast to the low nucleotide substitution rate, the frequency of recombination among different P. aeruginosa genotypes was high, leading to the random association of alleles. The P. aeruginosa population consists of equivalent genotypes that form a net-like population structure. However, each genotype represents a cluster of closely related strains which retain their sequence signature in the conserved gene pool and carry a set of genotype-specific DNA blocks. The codon adaptation index, a quantitative measure of synonymous codon bias of genes, was found to be consistently high in the P. aeruginosa genome irrespective of the metabolic category and the abundance of the encoded gene product. Such uniformly high codon adaptation indices of 0.55 to 0.85 fit the ubiquitous lifestyle of P. aeruginosa. 相似文献
13.
Martin Vingron Alvis Brazma Richard Coulson Jacques van Helden Thomas Manke Kimmo Palin Olivier Sand Esko Ukkonen 《Genome biology》2009,10(1):202-8
With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence
information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. 相似文献
14.
15.
The availability of hundreds of bacterial genome sequences has altered the study of bacterial pathogenesis, affecting both design of experiments and analysis of results. Comparative genomics and genomic tools have been used to identify virulence factors and genes involved in environmental persistence of pathogens. However, a major stumbling block in the genomics revolution has been the large number of genes with unknown function that have been identified in every organism sequenced to date. 相似文献
16.
Computational analysis of complete genomes, followed by experimental testing of emerging hypotheses — the area of research often referred to as functional genomics — aims at deciphering the wealth of information contained in genome sequences and at using it to improve our understanding of the mechanisms of cell function. This review centers on the recent progress in the genome analysis with special emphasis on the new insights in enzyme evolution. Standard methods of predicting functions for new proteins are listed and the common errors in their application are discussed. A new method of improving the functional predictions is introduced, based on a phylogenetic approach to functional prediction, as implemented in the recently constructed Clusters of Orthologous Groups (COG) database (available at http://www.ncbi.nlm.nih.gov/COG). This approach provides a convenient way to characterize the protein families (and metabolic pathways) that are present or absent in any given organism. Comparative analysis of microbial genomes based on this approach shows that metabolic diversity generally correlates with the genome size-parasitic bacteria code for fewer enzymes and lesser number of metabolic pathways than their free-living relatives. Comparison of different genomes reveals another evolutionary trend, the non-orthologous gene displacement of some enzymes by unrelated proteins with the same cellular function. An examination of the phylogenetic distribution of such cases provides new clues to the problems of biochemical evolution, including evolution of glycolysis and the TCA cycle.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
17.
The animal in the genome: comparative genomics and evolution 总被引:1,自引:0,他引:1
Copley RR 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1496):1453-1461
Comparisons between completely sequenced metazoan genomes have generally emphasized how similar their encoded protein content is, even when the comparison is between phyla. Given the manifest differences between phyla and, in particular, intuitive notions that some animals are more complex than others, this creates something of a paradox. Simplistic explanations have included arguments such as increased numbers of genes; greater numbers of protein products produced through alternative splicing; increased numbers of regulatory non-coding RNAs and increased complexity of the cis-regulatory code. An obvious value of complete genome sequences lies in their ability to provide us with inventories of such components. I examine progress being made in linking genome content to the pattern of animal evolution, and argue that the gap between genomic and phenotypic complexity can only be understood through the totality of interacting components. 相似文献
18.
In view of the realization that fossil fuels reserves are limited, various options of generating energy are being explored.
Biological methods for producing fuels such as ethanol, diesel, hydrogen (H2), methane, etc. have the potential to provide a sustainable energy system for the society. Biological H2 production appears to be the most promising as it is non-polluting and can be produced from water and biological wastes.
The major limiting factors are low yields, lack of industrially robust organisms, and high cost of feed. Actually, H2 yields are lower than theoretically possible yields of 4 mol/mol of glucose because of the associated fermentation products
such as lactic acid, propionic acid and ethanol. The efficiency of energy production can be improved by screening microbial
diversity and easily fermentable feed materials. Biowastes can serve as feed for H2 production through a set of microbial consortia: (1) hydrolytic bacteria, (2) H2 producers (dark fermentative and photosynthetic). The efficiency of the bioconversion process may be enhanced further by
the production of value added chemicals such as polydroxyalkanoate and anaerobic digestion. Discovery of enormous microbial
diversity and sequencing of a wide range of organisms may enable us to realize genetic variability, identify organisms with
natural ability to acquire and transmit genes. Such organisms can be exploited through genome shuffling for transgenic expression
and efficient generation of clean fuel and other diverse biotechnological applications.
JIMB 2008: BioEnergy-Special issue 相似文献
19.
金小蜂不仅是重要的昆虫天敌资源,还是理想的模式生物。2010年1月15日,3种金小蜂(丽蝇蛹集金小蜂Nasonia vitripennis、吉氏金小蜂N.giraulti和长角金小蜂N.longicornis)的基因组在《科学》上发表。这一事件标志着金小蜂研究"后基因组时代"的开始。金小蜂基因组测序完成后,科学家们就利用生物信息学、比较基因组学、功能基因组学等方法,基于基因组平台,在进化遗传学、发育生物学、神经生物学、行为学等领域开展了系列研究,取得了重要进展,国际著名杂志《昆虫分子生物学》和《遗传》还以特刊的形式进行刊载。本文就金小蜂基因组学相关研究取得的进展予以扼要概述,并探讨其研究方向和发展前景。 相似文献
20.