首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Halomonas nucleoside diphosphate kinase (HaNDK) forms a dimeric assembly and Pseudomonas NDK (PaNDK) forms a tetrameric assembly. The mutation of Glu134 to Ala in HaNDK resulted in the conversion of the native dimeric structure to the tetramer assembly. Conversely, the mutation of Ala134 to Glu in PaNDK lead to the conversion from the tetramer to the dimer assembly, indicating that a single amino acid substitution at position 134 results in an alteration of the oligomeric structure of NDK. By modeling the structure of HaNDK and PaNDK based on the crystal structure of Myxococcus NDK, we showed that Glu134 exerts sufficient repulsive forces to disrupt the dimer-dimer interaction and prevent the formation of the tetramer.  相似文献   

2.
Nucleoside diphosphate kinase (NDPK) catalyzes the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates. The subunit folding and the dimeric basic structural unit are remarkably the same for available structures but, depending on species, dimers self-associate to form hexamers or tetramers. The crystal structure of the Escherichia coli NDPK reveals a new tetrameric quaternary structure for this protein family. The two tetramers differ by the relative orientation of interacting dimers, which face either the convex or the concave side of their central sheet as in either Myxococcus xanthus (type I) or E. coli (type II), respectively. In the type II tetramer, the subunits interact by a new interface harboring a zone called the Kpn loop as in hexamers, but by the opposite face of this loop. The evolutionary conservation of the interface residues indicates that this new quaternary structure seems to be the most frequent assembly mode in bacterial tetrameric NDP kinases.  相似文献   

3.
We report the purification and characterization of the enzyme nucleoside diphosphate kinase (Ndk) from Mycobacterium smegmatis . The N-terminus of the enzyme was blocked but an internal sequence showed approx. 70% homology with the same enzymes from Pseudomonas aeruginosa and Escherichia coli . Immobilization of the mycobacterial nucleoside diphosphate kinase on a Sepharose 4B matrix and passing the total cell extract through it revealed four proteins (P70, P65, P60, and P50, respectively) of M r 70 kDa, 65 kDa, 60 kDa and 50 kDa that were retained by the column. While the proteins of M r 70 kDa and 50 kDa modulated the activity of Ndk directing it towards GTP synthesis, the 60 kDa protein channelled the specificity of Ndk entirely towards CTP synthesis. The 65 kDa protein modulated the specificity of Ndk directing it entirely towards UTP synthesis. The specificity for such mycobacterial proteins towards NTP synthesis is retained when they are complexed with P. aeruginosa Ndk. We further demonstrate that the P70 protein is pyruvate kinase and that each of the four proteins forms a complex with Ndk and alters its substrate specificity. Given the ubiquitous nature of Ndk in the living cell and its role in maintaining correct ratios of intracellular nucleoside triphosphates, the implications of the occurrence of these complexes have been discussed in relation to the precursor pool for cell wall biosynthesis as well as RNA/DNA synthesis.  相似文献   

4.
Nucleoside diphosphate kinase (Ndk) is an important enzyme that generates nucleoside triphosphates (NTPs) or their deoxy derivatives by terminal phosphotransfer from an NTP such as ATP or GTP to any nucleoside diphosphate or its deoxy derivative. As NTPs, particularly GTP, are important for cellular macromolecular synthesis and signalling mechanisms, Ndk plays an important role in bacterial growth, signal transduction and pathogenicity. Specific examples of the role of Ndk in regulating growth, NTP formation and cell surface polysaccharide synthesis in two respiratory tract pathogens, Pseudomonas aeruginosa and Mycobacterium tuberculosis , are discussed.  相似文献   

5.
We have previously reported that two genes cloned from a cosmid library of Escherichia coli can restore mucoidy to an algR2 mutant of Pseudomonas aeruginosa . AlgR2 is a protein involved in the regulation of nucleoside diphosphate kinase (Ndk) as well as alginate synthesis in P. aeruginosa . One of the E. coli genes, rnk , encodes a 14.9 kDa protein with no homology to any other proteins. The other gene, sspA , encodes the stringent starvation protein, a regulatory protein involved in stationary-phase regulation and the stringent response of E. coli . While both rnk and sspA restored alginate production to the P. aeruginosa algR2 mutant, only rnk restored Ndk activity to the mutant. In this report, we have examined the effect of mutations in rnk and sspA on the levels of Ndk in E. coli . We find that a mutation in rnk drastically reduces the level of Ndk in E. coli . A mutation in sspA , however, affects the level of another nucleoside diphosphate kinase distinct from Ndk. The proteins can be easily distinguished from each other by their different affinities for nucleoside diphosphates (NDPs) and also by the differential effect of anti-Ndk antibodies on the reactions they catalyse. The ability of either of these two proteins to restore alginate synthesis in the algR2 mutant of P. aeruginosa demonstrates the importance of nucleoside triphosphate synthesis and energy metabolism for alginate synthesis. Additionally, a role for the stringent starvation protein (SspA) in the modulation of nucleoside triphosphate (NTP) levels in E. coli is also suggested from these experiments.  相似文献   

6.
Dissimilatory oxidation of thiosulfate in the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum is carried out by the ubiquitous sulfur-oxidizing (Sox) multi-enzyme system. In this system, SoxY plays a key role, functioning as the sulfur substrate-binding protein that offers its sulfur substrate, which is covalently bound to a conserved C-terminal cysteine, to another oxidizing Sox enzyme. Here, we report the crystal structures of a stand-alone SoxY protein of C. limicola f. thiosulfatophilum, solved at 2.15 A and 2.40 A resolution using X-ray diffraction data collected at 100 K and room temperature, respectively. The structure reveals a monomeric Ig-like protein, with an N-terminal alpha-helix, that oligomerizes into a tetramer via conserved contact regions between the monomers. The tetramer can be described as a dimer of dimers that exhibits one large hydrophobic contact region in each dimer and two small hydrophilic interface patches in the tetramer. At the tetramer interface patch, two conserved redox-active C-terminal cysteines form an intersubunit disulfide bridge. Intriguingly, SoxY exhibits a dimer/tetramer equilibrium that is dependent on the redox state of the cysteines and on the type of sulfur substrate component bound to them. Taken together, the dimer/tetramer equilibrium, the specific interactions between the subunits in the tetramer, and the significant conservation level of the interfaces strongly indicate that these SoxY oligomers are biologically relevant.  相似文献   

7.
We report the cloning and determination of the nucleotide sequence of the gene encoding nucleoside diphosphate kinase (Ndk) from Pseudomonas aeruginosa. The amino acid sequence of Ndk was highly homologous with other known bacterial and eukaryotic Ndks (39.9 to 58.3% amino acid identity). We have previously reported that P. aeruginosa strains with mutations in the genes algR2 and algR2 algH produce extremely low levels of Ndk and, as a consequence, are defective in their ability to grow in the presence of Tween 20, a detergent that inhibits a kinase which can substitute for Ndk. Hyperexpression of ndk from the clone pGWS95 in trans in the P. aeruginosa algR2an6 algR2 algH double mutant restored Ndk production to levels which equalled or exceeded wild-type levels and enabled these strains to grow in the presence of Tween 20. Hyperexpression of ndk from pGWS95 in the P. aeruginosa algR2 mutant also restored alginate production to levels that were approximately 60% of wild type. Nucleoside diphosphate kinase activity was present in both the cytosolic and membrane-associated fractions of P. aeruginosa. The cytosolic Ndk was non-specific in its transfer activity of the terminal phosphate from ATP to other nucleoside diphosphates. However, the membrane form of Ndk was more active in the transfer of the terminal phosphate from ATP to GDP resulting in the predominant formation of GTP. We report in this work that pyruvate kinase and Ndk form a complex which alters the specificity of Ndk substantially to GTP. The significance of GTP in signal transduction  相似文献   

8.
Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDP<-->ADP+(d)NTP. This reaction, suggested to occur by the transfer of the gamma-phosphoryl from ATP to the nucleoside diphosphate, is overall similar to that normally carried out by nucleoside diphosphate kinase (Ndk). Accordingly, Adk was proposed to be responsible for residual Ndk-like activity measured in a mutant strain of Escherichia coli, where the ndk gene was disrupted. We present data supporting a mechanism for the synthesis of nucleoside triphosphates by Adk that unlike the previously suggested mechanism mentioned above are in complete agreement with the current knowledge about the Adk enzyme and its various catalytic properties. We propose that nucleoside triphosphate synthesis occurs by beta-phosphoryl transfer from ADP to any bound nucleoside diphosphate. Our results point to the fact that the proposed Ndk-like mechanism of Adk originated from an erroneous interpretation of data, in that contamination of ATP preparations with AMP and ADP was not taken into account. Our results also address the proposed role of Adk in restoring a normal growth rate of mutant strains of E. coli lacking Ndk. These mutant strains apparently, in spite of a mutator phenotype, are able to synthesise nucleoside triphosphates by alternative pathways to maintain the same growth rate as the wildtype.  相似文献   

9.
Nucleoside diphosphate (NDP) kinase catalyzes the transfer of the gamma-phosphate from a nucleoside triphosphate to a nucleoside diphosphate. Human and rodent forms of this enzyme have been shown to be suppressors of metastasis. Crystals that diffract X-rays to high resolution have been obtained for the recombinant Myxococcus xanthus NDP kinase expressed in and purified from Escherichia coli. Two crystal forms have been obtained. Both forms are orthorhombic, space group I222 (or I2(1)2(1)2(1)) with a = 267.1 A, b = 74.0 A and c = 75.1 A for form I and a = 53.5 A, b = 74.0 A and c = 75.1 A for form II. Form I appears to have five molecules in the asymmetric unit approximately related to each other by a translation of 0.2 along the a axis. Diffraction data have been recorded to 1.9 A for form I and to 2.2 A for form II.  相似文献   

10.
Nucleoside diphosphate kinase (NDK) is known to form homotetramers or homohexamers. To clarify the oligomer state of NDK from moderately halophilic Halomonas sp. 593 (HaNDK), the oligomeric state of HaNDK was characterized by light scattering followed by X‐ray crystallography. The molecular weight of HaNDK is 33,660, and the X‐ray crystal structure determination to 2.3 and 2.7 Å resolution showed a dimer form which was confirmed in the different space groups of R3 and C2 with an independent packing arrangement. This is the first structural evidence that HaNDK forms a dimeric assembly. Moreover, the inferred molecular mass of a mutant HaNDK (E134A) indicated 62.1–65.3 kDa, and the oligomerization state was investigated by X‐ray crystallography to 2.3 and 2.5 Å resolution with space groups of P21 and C2. The assembly form of the E134A mutant HaNDK was identified as a Type I tetramer as found in Myxococcus NDK. The structural comparison between the wild‐type and E134A mutant HaNDKs suggests that the change from dimer to tetramer is due to the removal of negative charge repulsion caused by the E134 in the wild‐type HaNDK. The higher ordered association of proteins usually contributes to an increase in thermal stability and substrate affinity. The change in the assembly form by a minimum mutation may be an effective way for NDK to acquire molecular characteristics suited to various circumstances.  相似文献   

11.
To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer–dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the tethered particle motion technique, we demonstrate that in solution DNA looping is highly dynamic and involves a transient interaction between the two DNA-bound dimers. Furthermore, we show that Ecl18kI cleaves DNA in the synaptic complex much faster than when acting on a single recognition site. Contrary to Ecl18kI, the tetramerization interface mutant R174A binds DNA as a dimer, shows no DNA looping and is virtually inactive. We conclude that Ecl18kI follows the association model for the synaptic complex assembly in which it binds to the target site as a dimer and then associates into a transient tetrameric form to accomplish the cleavage reaction.  相似文献   

12.
Nucleoside diphosphate kinase (Ndk) is a ubiquitous enzyme which functions in balancing the nucleotide pool of the cell. We have recently reported that in addition to being intracellular in both mucoid and nonmucoid Pseudomonas aeruginosa, Ndk is also secreted into the extracellular environment by mucoid P. aeruginosa cells. This secreted Ndk has biochemical activity similar to the intracellular Ndk and is 16 kDa in size. To demonstrate that Ndk is indeed secreted and to localize the secretion motif, we constructed an ndk knockout mutant, which lacks both intracellular and extracellular forms of Ndk. In this study, we report the construction of deletion derivatives made from the carboxy-terminal region of Ndk. These deletion derivatives were introduced into the ndk::Cm knockout mutant and were examined for the intracellular and extracellular presence of Ndk. It was observed that the carboxy-terminal 8-amino-acid region is required for the secretion of Ndk into the extracellular region. This region has the sequence DXXX, where X is a predominantly hydrophobic residue. Such sequences represent a conserved motif in proteins secreted by the type I secretory pathway in gram-negative microorganisms. To investigate the significance of this motif in the secretion of Ndk, we constructed a fusion protein of Ndk and the blue fluorescent protein (BFP) as well as a fusion protein of mutated Ndk (whose DTEV motif has been changed to AAAA) and the BFP. The presence of extracellular Ndk was detected only in the ndk::Cm knockout mutant harboring the wild-type BFP-Ndk protein fusion. We could not detect the presence of extracellular Ndk in the ndk::Cm knockout mutant containing the mutated BFP-Ndk protein fusion. In addition, we have also used immunofluorescence microscopy to localize the wild-type and mutated BFP-Ndk proteins in the cell. The significance of these observations is discussed.  相似文献   

13.
Histidine phosphorylation is important in prokaryotes and occurs to the extent of 6% of total phosphorylation in eukaryotes. Nevertheless phosphohistidine residues are not normally observed in proteins due to rapid hydrolysis of the phosphoryl group under acidic conditions. Many rapid processes employ phosphohistidines, including the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS), the bacterial two-component systems and reactions catalyzed by enzymes such as nucleoside diphosphate kinase and succinyl-CoA synthetase. In the PTS, the NMR structure of the phosphohistidine moiety of the phosphohistidine-containing protein was determined but no X-ray structures of phosphohistidine forms of PTS proteins have been elucidated. There have been crystal structures of a few phosphohistidine-containing proteins determined: nucleoside diphosphate kinase, succinyl-CoA synthetase, a cofactor-dependent phosphoglycerate mutase and the protein PAE2307 from the hyperthermophilic archaeon Pyrobaculum aerophilum. A common theme for these stable phosphohistidines is the occurrence of ion-pair hydrogen bonds (salt bridges) involving the non-phosphorylated nitrogen atom of the histidine imidazole ring with an acidic amino acid side chain.  相似文献   

14.
Pathogenicity of Mycobacterium tuberculosis is closely related to its ability to survive and replicate in the hostile environment of macrophages. For some pathogenic bacteria, secretion of ATP-utilizing enzymes into the extracellular environment aids in pathogen survival via P2Z receptor-mediated, ATP-induced death of infected macrophages. A component of these enzymes is nucleoside diphosphate kinase (Ndk). The ndk gene was cloned from M. tuberculosis H37Rv and expressed in Escherichia coli. Ndk was secreted into the culture medium by M. tuberculosis, as determined by enzymatic activity and Western blotting. Purified Ndk enhanced ATP-induced macrophage cell death, as assayed by the release of [14C]adenine. A catalytic mutant of Ndk failed to enhance ATP-induced macrophage cell death, and periodate-oxidized ATP (oATP), an irreversible inhibitor of P2Z receptor, blocked ATP/Ndk-induced cell death. Purified Ndk was also found to be autophosphorylated with broad specificity for all nucleotides. Conversion of His117-->Gln, which is part of the nucleotide-binding site, abolished autophosphorylation. Purified Ndk also showed GTPase activity. Collectively, these results indicate that secreted Ndk of M. tuberculosis acts as a cytotoxic factor for macrophages, which may help in dissemination of the bacilli and evasion of the immune system.  相似文献   

15.
With the aim of enhancing interactions involved in dimer formation, an intersubunit disulfide bridge was engineered in the superoxide dismutase enzyme of Mycobacterium tuberculosis. Ser-123 was chosen for mutation to cysteine since it resides at the dimer interface where the serine side chain interacts with the same residue in the opposite subunit. Gel electrophoresis and X-ray crystallographic studies of the expressed mutant confirmed formation of the disulfide bond under nonreducing conditions. However, the mutant protein was found to be less stable than the wild type as judged by susceptibility to denaturation in the presence of guanidine hydrochloride. Decreased stability probably results from formation of a disulfide bridge with a suboptimal torsion angle and exclusion of solvent molecules from the dimer interface.  相似文献   

16.
The superfamily of eye lens betagamma-crystallins is highly modularized, with Greek key motifs being used to form symmetric domains. Sequences of monomeric gamma-crystallins and oligomeric beta-crystallins fold into two domains that pair about a further conserved symmetric interface. Conservation of this assembly interface by domain swapping is the device adopted by family member betaB2-crystallin to form a solution dimer. However, the betaB1-crystallin solution dimer is formed from an interface used by the domain-swapped dimer to form a tetramer in the crystal lattice. Comparison of these two structures indicated an intriguing relationship between linker conformation, interface ion pair networks, and higher assembly. Here the X-ray structure of recombinant human betaB2-crystallin showed that domain swapping was determined by the sequence and not assembly conditions. The solution characteristics of mutants that were designed to alter an ion pair network at a higher assembly interface and a mutant that changed a proline showed they remained dimeric. X-ray crystallography showed that the dimeric mutants did not reverse domain swapping. Thus, the sequence of betaB2-crystallin appears well optimized for domain swapping. However, a charge-reversal mutation to the conserved domain-pairing interface showed drastic changes to solution behavior. It appears that the higher assembly of the betagamma-crystallin domains has exploited symmetry to create diversity while avoiding aggregation. These are desirable attributes for proteins that have to exist at very high concentration for a very long time.  相似文献   

17.
The regulatory protein AlgR2 in Pseudomonas aeruginosa positively regulates nucleoside diphosphate kinase (Ndk) and succinyl-CoA synthetase, enzymes critical in nucleoside triphosphate (NTP) formation. AlgR2 positively regulates the production of alginate, GTP, ppGpp and inorganic polyphosphate (poly P). An algR2 mutant with low levels of these metabolites has them restored by introducing and overexpressing either the algR2 or the ndk gene into the algR2 mutant. Thus, Ndk is involved in the formation of these compounds and largely prevents the death of the algR2 mutant, which occurs early in the stationary phase. We demonstrate that the 12 kDa Ndk–pyruvate kinase (Pk) complex, previously shown to generate predominantly GTP instead of all the NTPs, has a low affinity for the deoxynucleoside diphosphates and cannot generate the dNTPs needed for DNA replication and cell division; this complex may thus be involved in regulating the levels of both NTPs and dNTPs that modulate cell division and survival in the stationary phase.  相似文献   

18.
We report the purification and characterization of a protein from the membrane fraction of Pseudomonas aeruginosa showing intrinsic guanosine triphosphatase (GTPase) activity. The protein was purified as a 48-kDa polypeptide capable of binding and hydrolyzing GTP. The N-terminal sequence of the purified protein revealed its similarity to the Escherichia coli Ras-like protein (Era), and the protein cross-reacted with anti-Era antibodies. This protein was named Pseudomonas Ras-like protein (Pra). Anti-Pra antibodies also cross-reacted with E. coli Era protein. Pra is autophosphorylated in vitro, with phosphotransfer of the terminal phosphate from [gamma-32P]GTP but not [gamma-32P]ATP. Pra is capable of complex formation with the truncated 12-kDa form of nucleoside diphosphate kinase (Ndk) but not with the 16-kDa form. Purified Pra was also shown to physically interact with pyruvate kinase (Pk); Pk and Pra can form a complex, but when the 12-kDa Ndk, Pk, and Pra are all present, Pk has a higher affinity than Pra for forming a complex with the 12-kDa Ndk. The 12-kDa Ndk-Pra complex catalyzed increased synthesis of GTP and dGTP and diminished synthesis of CTP and UTP or dCTP and dTTP relative to their synthesis by uncomplexed Ndk. Moreover, the complex of Pra with Pk resulted in the specific synthesis of GTP as well when Pra was present in concentrations in excess of that of Pk. Membrane fractions from cells harvested in the mid-log phase demonstrated very little nucleoside triphosphate (NTP)-synthesizing activity and no detectable Ndk. Membranes from cells harvested at late exponential phase showed NTP-synthesizing activity and the physical presence of Ndk but not of Pk or Pra. In contrast, membrane fractions of cells harvested at early to late stationary phase showed predominant GTP synthesis and the presence of increasing amounts of Pk and Pra. It is likely that the association of Pra with Ndk and/or Pk restricts its intrinsic GTPase activity, which may modulate stationary-phase gene expression and the survival of P. aeruginosa by modulating the level of GTP.  相似文献   

19.
Pseudomonas aeruginosa secretes copious amounts of an exopolysaccharide called alginate during infection in the lungs of cystic fibrosis patients. A mutation in the algR2 gene of mucoid P. aeruginosa is known to exhibit a nonmucoid (nonalginate-producing) phenotype and showed reduced activities of succinyl-coenzyme A (CoA) synthetase (Scs) and nucleoside diphosphate kinase (Ndk), implying coregulation of Ndk and Scs in alginate synthesis. We have cloned and characterized the sucCD operon encoding the alpha and beta subunits of Scs from P. aeruginosa and have studied the role of Scs in generating GTP, an important precursor in alginate synthesis. We demonstrate that, in the presence of GDP, Scs synthesizes GTP using ATP as the phosphodonor and, in the presence of ADP, Scs synthesizes ATP using GTP as a phosphodonor. In the presence of inorganic orthophosphate, succinyl-CoA, and an equimolar amount of ADP and GDP, Scs synthesizes essentially an equimolar amount of ATP and GTP. Such a mechanism of GTP synthesis can be an alternate source for the synthesis of alginate as well as for the synthesis of other macromolecules requiring GTP such as RNA and protein. Scs from P. aeruginosa is also shown to exhibit a broad NDP kinase activity. In the presence of inorganic orthophosphate (P(i)), succinyl-CoA, and either GDP, ADP, UDP or CDP, it synthesizes GTP, ATP, UTP, or CTP. Scs was previously shown to copurify with Ndk, presumably as a complex. In mucoid cells of P. aeruginosa, Ndk is also known to exist in two forms, a 16-kDa cytoplasmic form predominant in the log phase and a 12-kDa membrane-associated form predominant in the stationary phase. We have observed that the 16-kDa Ndk-Scs complex present in nonmucoid cells, synthesizes all three of the nucleoside triphosphates from a mixture of GDP, UDP, and CDP, whereas the 12-kDa Ndk-Scs complex specifically present in mucoid cell predominantly synthesizes GTP and UTP but not CTP. Such regulation may promote GTP synthesis in the stationary phase when the bulk of alginate is synthesized by mucoid P. aeruginosa.  相似文献   

20.
Pilin proteins assemble into Type IV pili (T4P), surface-displayed bacterial filaments with virulence functions including motility, attachment, transformation, immune escape, and colony formation. However, challenges in crystallizing full-length fiber-forming and membrane protein pilins leave unanswered questions regarding pilin structures, assembly, functions, and vaccine potential. Here we report pilin structures of full-length DnFimA from the sheep pathogen Dichelobacter nodosus and FtPilE from the human pathogen Francisella tularensis at 2.3 and 1 ? resolution, respectively. The DnFimA structure reveals an extended kinked N-terminal α-helix, an unusual centrally located disulfide, conserved subdomains, and assembled epitopes informing serogroup vaccines. An interaction between the conserved Glu-5 carboxyl oxygen and the N-terminal amine of an adjacent subunit in the crystallographic dimer is consistent with the hypothesis of a salt bridge between these groups driving T4P assembly. The FtPilE structure identifies an authentic Type IV pilin and provides a framework for understanding the role of T4P in F. tularensis virulence. Combined results define a unified pilin architecture, specialized subdomain roles in pilus assembly and function, and potential therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号