首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA replication stress, a feature of human cancers, often leads to instability at specific genomic loci, such as the common fragile sites (CFSs). Cells experiencing DNA replication stress may also exhibit mitotic DNA synthesis (MiDAS). To understand the physiological function of MiDAS and its relationship to CFSs, we mapped, at high resolution, the genomic sites of MiDAS in cells treated with the DNA polymerase inhibitor aphidicolin. Sites of MiDAS were evident as well-defined peaks that were largely conserved between cell lines and encompassed all known CFSs. The MiDAS peaks mapped within large, transcribed, origin-poor genomic regions. In cells that had been treated with aphidicolin, these regions remained unreplicated even in late S phase; MiDAS then served to complete their replication after the cells entered mitosis. Interestingly, leading and lagging strand synthesis were uncoupled in MiDAS, consistent with MiDAS being a form of break-induced replication, a repair mechanism for collapsed DNA replication forks. Our results provide a better understanding of the mechanisms leading to genomic instability at CFSs and in cancer cells.Subject terms: Cancer, DNA damage and repair  相似文献   

2.
Perturbed DNA replication in early stages of cancer development induces chromosomal instability preferentially at fragile sites. However, the molecular basis for this instability is unknown. Here, we show that even under normal growth conditions, replication fork progression along the fragile site, FRA16C, is slow and forks frequently stall at AT-rich sequences, leading to activation of additional origins to enable replication completion. Under mild replication stress, the frequency of stalling at AT-rich sequences is further increased. Strikingly, unlike in the entire genome, in the FRA16C region additional origins are not activated, suggesting that all potential origins are already activated under normal conditions. Thus, the basis for FRA16C fragility is replication fork stalling at AT-rich sequences and inability to activate additional origins under replication stress. Our results provide a mechanism explaining the replication stress sensitivity of fragile sites and thus, the basis for genomic instability during early stages of cancer development.  相似文献   

3.
Common fragile sites (CFS) are difficult-to-replicate genomic regions that show a high propensity to breakage following certain forms of DNA replication stress. Long considered a fascinating component of human chromosome structure, their relevance for biology is proven by the fact that they are frequently rearranged in cancer cells. Furthermore, CFS were found to be the preferential targets for genome instability in the early stages of human tumorigenesis. In recent years, much progress has been made in understanding the structural features of CFS and the mechanisms that monitor and regulate their integrity. From these studies it has emerged that the reason for their fragility may depend on the abnormal high-frequency of fork stalling events occurring at CFS during DNA replication. Consistently, the ATR-dependent checkpoint together with several proteins involved in response to replication fork stalling have been implicated in maintaining CFS stability. Furthermore, more recent findings propose that the scarcity of replication initiation events within CFS may contribute to their expression upon replication perturbation. This review will focus on the molecular determinants responsible for genomic instability at CFS and the systems used by cells to address this eventuality.  相似文献   

4.
Common fragile sites (CFSs) are inherently unstable genomic loci that are recurrently altered in human tumor cells. Despite their instability, CFS are ubiquitous throughout the human genome and associated with large tumor suppressor genes or oncogenes. CFSs are enriched with repetitive DNA sequences, one feature postulated to explain why these loci are inherently difficult to replicate, and sensitive to replication stress. We have shown that specialized DNA polymerases (Pols) η and κ replicate CFS-derived sequences more efficiently than the replicative Pol δ. However, we lacked an understanding of how these enzymes cooperate to ensure efficient CFS replication. Here, we designed a model of lagging strand replication with RFC loaded PCNA that allows for maximal activity of the four-subunit human Pol δ holoenzyme, Pol η, and Pol κ in polymerase mixing assays. We discovered that Pol η and κ are both able to exchange with Pol δ stalled at repetitive CFS sequences, enhancing Normalized Replication Efficiency. We used this model to test the impact of PCNA mono-ubiquitination on polymerase exchange, and found no change in polymerase cooperativity in CFS replication compared with unmodified PCNA. Finally, we modeled replication stress in vitro using aphidicolin and found that Pol δ holoenzyme synthesis was significantly inhibited in a dose-dependent manner, preventing any replication past the CFS. Importantly, Pol η and κ were still proficient in rescuing this stalled Pol δ synthesis, which may explain, in part, the CFS instability phenotype of aphidicolin-treated Pol η and Pol κ-deficient cells. In total, our data support a model wherein Pol δ stalling at CFSs allows for free exchange with a specialized polymerase that is not driven by PCNA.  相似文献   

5.
6.
7.
The mammalian chromosomes present specific sites of gaps or breaks, the common fragile sites (CFSs), when the cells are exposed to DNA replication stress or to some DNA binding compounds. CFSs span hundreds or thousands of kilobases. The analysis of these sequences has not definitively clarified the causes of their fragility. There is considerable evidence that CFSs are regions of late or slowed replication in the presence of sequence elements that have the propensity to form secondary structures, and that the cytogenetic expression of CFSs may be due to unreplicated DNA. In order to analyse the relationship between DNA replication time and fragility, in this work we have investigated the timing of replication of sequences mapping within two CFSs (FRA1H and FRA2G), of syntenic non-fragile sequences and of early and late replicating control sequences by using fluorescent in situ hybridization on interphase nuclei, conventional fluorescence microscopy and confocal microscopy. Our results indicate that the fragile sequences are slow replicating and that they enter G2 phase unreplicated with very high frequency. Thus these regions could sometimes reach mitosis unreplicated or undercondensed and be expressed as chromosome gaps/breakages.  相似文献   

8.
Common fragile sites as targets for chromosome rearrangements   总被引:4,自引:0,他引:4  
Arlt MF  Durkin SG  Ragland RL  Glover TW 《DNA Repair》2006,5(9-10):1126-1135
Common fragile sites are large chromosomal regions that preferentially exhibit gaps or breaks after DNA synthesis is partially perturbed. Fragile site instability in cultured cells is well documented and includes gaps and breaks on metaphase chromosomes, translocation and deletions breakpoints, and sister chromosome exchanges. In recent years, much has been learned about the genomic structure at fragile sites and the cellular mechanisms that monitor their stability. The study of fragile sites has merged with that of cell cycle checkpoints and DNA repair, with multiple proteins from these pathways implicated in fragile site stability, including ATR, BRCA1, CHK1, and RAD51. Since their discovery, fragile sites have been implicated in constitutional and cancer chromosome rearrangements in vivo and recent studies suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early tumorigenesis. Here we review the relationship of fragile sites to chromosome rearrangements, particularly in tumor cells, and discuss the mechanisms that may be involved.  相似文献   

9.
Common fragile sites: mechanisms of instability revisited   总被引:4,自引:0,他引:4  
Common fragile sites (CFSs) are large chromosomal regions prone to breakage upon replication stress that are considered a driving force of oncogenesis. CFSs were long believed to contain sequences blocking fork progression, thus impeding replication completion and leading to DNA breaks upon chromosome condensation. However, recent studies show that delayed completion of DNA replication instead depends on a regional paucity in initiation events. Because the distribution and the timing of these events are cell type dependent, different chromosomal regions can be committed to fragility in different cell types. These new data reveal the epigenetic nature of CFSs and open the way to a reevaluation of the role played by these sites in the formation of chromosome rearrangements found in tumors from different tissues.  相似文献   

10.
There is rising evidence that cancer development is associated from its earliest stages with DNA replication stress, a major source of spontaneous genomic instability. However, the origin of these replication defects has remained unclear. We have investigated the consequences of upregulating error-prone DNA polymerases (pol) beta and kappa on chromosomal DNA replication. These enzymes are misregulated in different types of cancers and induce major chromosomal instabilities when overexpressed at low levels. Here, we have used DNA combing to show that a moderate overexpression of pol beta or pol kappa is sufficient to impede replication fork progression and to promote the activation of additional replication origins. Interestingly, alterations of the normal replication program induced by excess error-prone polymerases were not detected by the replication checkpoint. We therefore propose that upregulation of error-prone DNA polymerases induces a checkpoint-blind replication stress that contributes to genomic instability and to cancer development.  相似文献   

11.
Breaks at common fragile sites (CFS) are a recognized source of genome instability in pre-neoplastic lesions, but how such checkpoint-proficient cells escape surveillance and continue cycling is unknown. Here we show, in lymphocytes and fibroblasts, that moderate replication stresses like those inducing breaks at CFSs trigger chromatin loading of sensors and mediators of the ATR pathway but fail to activate Chk1 or p53. Consistently, we found that cells depleted of ATR, but not of Chk1, accumulate single-stranded DNA upon Mre11-dependent resection of collapsed forks. Partial activation of the pathway under moderate stress thus takes steps against fork disassembly but tolerates S-phase progression and mitotic onset. We show that fork protection by ATR is crucial to CFS integrity, specifically in the cell type where a given site displays paucity in backup replication origins. Tolerance to mitotic entry with under-replicated CFSs therefore results in chromosome breaks, providing a pool of cells committed to further instability.  相似文献   

12.
During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.  相似文献   

13.
Non-Homologous End Joining (NHEJ) is one of the two major pathways of DNA Double Strand Breaks (DSBs) repair. Mutations in human NHEJ genes can lead to immunodeficiency due to its role in V(D)J recombination in the immune system. In addition, most patients carrying mutations in NHEJ genes display developmental anomalies which are likely the result of a general defect in repair of endogenously induced DSBs such as those arising during normal DNA replication. Cernunnos/XLF is a recently identified NHEJ gene which is mutated in immunodeficiency with microcephaly patients. Here we aimed to investigate whether Cernunnos/XLF mutations disrupt the ability of patient cells to respond to replication stress conditions. Our results demonstrate that Cernunnos/XLF mutated cells and cells downregulated for Cernunnos/XLF have increased sensitivity to conditions which perturb DNA replication. In addition, under replication stress, these cells exhibit impaired DSB repair and increased accumulation of cells in G2/M. Moreover Cernunnos/XLF mutated and down regulated cells display greater chromosomal instability, particularly at fragile sites, under replication stress conditions. These results provide evidence for the role of Cernunnos/XLF in repair of DSBs and maintenance of genomic stability under replication stress conditions. This is the first study of a NHEJ syndrome showing association with impaired cellular response to replication stress conditions. These findings may be related to the clinical features in these patients which are not due to the V(D)J recombination defect. Additionally, in light of the emerging important role of replication stress in the early stages of cancer development, our findings may provide a mechanism for the role of NHEJ in preventing tumorigenesis.  相似文献   

14.
15.
The common fragile sites (CFSs) are large regions of profound genomic instability found in all individuals. A number of the CFSs have been found to span genes that extend over large genomic regions (>700 kb). The expression of these genes is frequently abrogated in a number of different cancers and several of them have already been shown to function as tumor suppressor genes, both in vitro and in vivo. We analyzed the expression of 14 large CFS genes in two distinct groups of head and neck cancers using real-time RT-PCR. The first were oral tongue squamous cell carcinomas (SCCs) and the second were base of tongue/tonsillar (oropharyngeal) SCCs. These two groups were previously examined for the presence of human papillomavirus (HPV) and while 46% of the oropharyngeal cancers were positive for HPV16 only one of 52 oral cancers contained HPV16 sequences. We observed a distinct pattern of loss of expression of the large CFS genes in the two groups of head and neck cancers. In addition, there was no correlation between the relative instability in different CFS regions and which genes were inactivated. Thus, this report demonstrates another distinction between these two groups of head and neck cancer. In addition, it suggests that there is selection for loss of expression of specific CFS genes in these cancers.  相似文献   

16.
Identifying and characterizing novel genetic risk factors for BRCA1/2 negative breast cancers is highly relevant for early diagnosis and development of a management plan. Mutations in a number of DNA repair genes have been associated with genomic instability and development of breast and various other cancers. Whole exome sequencing efforts by 2 groups have led to the discovery in distinct populations of multiple breast cancer susceptibility mutations in RECQL, a gene that encodes a DNA helicase involved in homologous recombination repair and response to replication stress. RECQL pathogenic mutations were identified that truncated or disrupted the RECQL protein or introduced missense mutations in its helicase domain. RECQL mutations may serve as a useful biomarker for breast cancer. Targeting RECQL associated tumors with novel DNA repair inhibitors may provide a new strategy for anti-cancer therapy.  相似文献   

17.
DNA instability at chromosomal fragile sites in cancer   总被引:3,自引:0,他引:3  
Human chromosomal fragile sites are specific genomic regions which exhibit gaps or breaks on metaphase chromosomes following conditions of partial replication stress. Fragile sites often coincide with genes that are frequently rearranged or deleted in human cancers, with over half of cancer-specific translocations containing breakpoints within fragile sites. But until recently, little direct evidence existed linking fragile site breakage to the formation of cancer-causing chromosomal aberrations. Studies have revealed that DNA breakage at fragile sites can induce formation of RET/PTC rearrangements, and deletions within the FHIT gene, resembling those observed in human tumors. These findings demonstrate the important role of fragile sites in cancer development, suggesting that a better understanding of the molecular basis of fragile site instability is crucial to insights in carcinogenesis. It is hypothesized that under conditions of replication stress, stable secondary structures form at fragile sites and stall replication fork progress, ultimately resulting in DNA breaks. A recent study examining an FRA16B fragment confirmed the formation of secondary structure and DNA polymerase stalling within this sequence in vitro, as well as reduced replication efficiency and increased instability in human cells. Polymerase stalling during synthesis of FRA16D has also been demonstrated. The ATR DNA damage checkpoint pathway plays a critical role in maintaining stability at fragile sites. Recent findings have confirmed binding of the ATR protein to three regions of FRA3B under conditions of mild replication stress. This review will discuss recent advances made in understanding the role and mechanism of fragile sites in cancer development.  相似文献   

18.
Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably, restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells. Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the initiation of genomic instability, linking alterations at common fragile sites to the origin of genome instability.  相似文献   

19.
Common fragile sites (CFSs) are specific chromosome regions that exhibit an increased frequency of breaks when cells are exposed to a DNA-replication inhibitor such as aphidicolin. PARK2 and DMD, the causative genes for autosomal-recessive juvenile Parkinsonism and Duchenne and Becker muscular dystrophy, respectively, are two very large genes that are located within aphidicolin-induced CFSs. Gross rearrangements within these two genes are frequently observed as the causative mutations for these diseases, and similar alterations within the large fragile sites that surround these genes are frequently observed in cancer cells. To elucidate the molecular mechanisms underlying this fragility, we performed a custom-designed high-density comparative genomic hybridization analysis to determine the junction sequences of approximately 500 breakpoints in germ cell lines and cancer cell lines involving PARK2 or DMD. The sequence signatures where these breakpoints occur share some similar features both in germ cell lines and in cancer cell lines. Detailed analyses of these structures revealed that microhomologies are predominantly involved in rearrangement processes. Furthermore, breakpoint-clustering regions coincide with the latest-replicating region and with large nuclear-lamina-associated domains and are flanked by the highest-flexibility peaks and R/G band boundaries, suggesting that factors affecting replication timing collectively contribute to the vulnerability for rearrangement in both germ cell and somatic cell lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号