首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G0/G1 switch gene 2 (G0S2) is a direct retinoic acid target implicated in cancer biology and therapy based on frequent methylation-mediated silencing in diverse solid tumors. We recently reported that low G0S2 expression in breast cancer, particularly estrogen receptor-positive (ER+) breast cancer, correlates with increased rates of recurrence, indicating that G0S2 plays a role in breast cancer progression. However, the function(s) and mechanism(s) of G0S2 tumor suppression remain unclear. In order to determine potential mechanisms of G0S2 anti-oncogenic activity, we performed genome-wide expression analysis that revealed an enrichment of gene signatures related to PI3K/mTOR pathway activation in G0S2 null cells as compared to G0S2 wild-type cells. G0S2 null cells also exhibited a dramatic decreased sensitivity to PI3K/mTOR pathway inhibitors. Conversely, restoring G0S2 expression in human ER+ breast cancer cells decreased basal mTOR signaling and sensitized the cells to pharmacologic mTOR pathway inhibitors. Notably, we provide evidence here that the increase in recurrence seen with low G0S2 expression is especially prominent in patients who have undergone antiestrogen therapy. Further, ER+ breast cancer cells with restored G0S2 expression had a relative increased sensitivity to tamoxifen. These findings reveal that in breast cancer G0S2 functions as a tumor suppressor in part by repressing PI3K/mTOR activity, and that G0S2 enhances therapeutic responses to PI3K/mTOR inhibitors. Recent studies implicate hyperactivation of PI3K/mTOR signaling as promoting resistance to antiestrogen therapies in ER+ breast cancer. Our data establishes G0S2 as opposing this form of antiestrogen resistance. This promotes further investigation of the role of G0S2 as an antineoplastic breast cancer target and a biomarker for recurrence and therapy response.  相似文献   

2.
It is thought that environmental pollutants, such as polycyclic aromatic hydrocarbons (PAH), contribute to human breast tumorigenesis, yet their roles remain incompletely elucidated. The prototypical PAH 7,12-dimethylbenz(alpha)anthracene (DMBA) specifically and effectively induces mammary tumor formation in rodent models. In an attempt to explore the molecular mechanisms by which PAH initiates and promotes mammary tumorigenesis, we examined the expression of several cell cycle regulators in rat mammary tumors induced by DMBA. Expression of cyclin D1, murine double minute-2 (MDM2), and Akt was up-regulated in tumors in comparison to normal mammary glands, as indicated by RT-PCR, Western blot analysis, and immunohistochemical staining. Expression of p27Kip1 protein was also elevated in the tumors with increased cytoplasmic localization. However, RB protein remained hyperphosphorylated. To directly test the effects of DMBA, the MCF-7 human breast cancer cells were treated. DMBA induced MDM2 expression in a dose- and time-dependent fashion in the MCF-7 cells, and this activation appeared to be p53 dependent. These data suggest that activation of cyclin D1, MDM2, and AKT as well as increased expression and cytoplasmic localization of p27Kip1 may play a role in this model of environmental pollutant-induced mammary tumorigenesis.  相似文献   

3.
We have identified mRNA markers of estradiol and progesterone action in the mouse mammary gland and uterus to establish an in vivo model for the evaluation of novel and potentially tissue selective estrogens and progestins. Gene chip analysis of mRNA from ovariectomized (OVX) mice treated with vehicle (V), 17beta-estradiol (E2), progesterone (P) or E2+P for 7 days identified defensinbeta1 (Defbeta1) and indoleamine-pyrrole 2,3 dioxygenase (INDO) as markers of E2 and P action in the mammary gland, and serine protease inhibitor, Kazal type 3 (Spink3) and G protein-coupled receptor 105 (GPR105) as markers in the uterus. Defbeta1 and Spink3 are both upregulated by E2+P, whereas INDO and GPR105 have a complementary profile of upregulation by E2 alone and suppression of the E2 effect by P. Quantitative RT-PCR analysis of mammary gland markers was concordant with histological changes. Using this model, medroxyprogesterone acetate (MPA) and tanaproget (TNPR), a novel nonsteroidal progesterone receptor agonist, were evaluated and found to have no marked tissue selectivity relative to progesterone. In addition, the ERalpha selective ligand propyl pyrazole triol (PPT) and the ERbeta selective ligands ERB-041 and WAY-202196 were evaluated on the mammary gland endpoints of histology and Defbeta1 mRNA expression, and showed that ERalpha stimulation is necessary and sufficient for eliciting estradiol-mediated changes in the mammary gland.  相似文献   

4.
5.
The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis that is regulated by multiple signaling pathways. Previously, we have shown that the nuclear factor of activated T-cells 5 (NFAT5) is involved in the regulation of intestinal enterocyte differentiation. Here we show that treatment with sodium chloride (NaCl), which activates NFAT5 signaling, increased mTORC1 repressor regulated in development and DNA damage response 1 (REDD1) protein expression and inhibited mTOR signaling; these alterations were attenuated by knockdown of NFAT5. Knockdown of NFAT5 activated mammalian target of rapamycin (mTOR) signaling and significantly inhibited REDD1 mRNA expression and protein expression. Consistently, overexpression of NFAT5 increased REDD1 expression. In addition, knockdown of REDD1 activated mTOR and Notch signaling, whereas treatment with mTOR inhibitor rapamycin repressed Notch signaling and increased the expression of the goblet cell differentiation marker mucin 2 (MUC2). Moreover, knockdown of NFAT5 activated Notch signaling and decreased MUC2 expression, while overexpression of NFAT5 inhibited Notch signaling and increased MUC2 expression. Our results demonstrate a role for NFAT5 in the regulation of mTOR signaling in intestinal cells. Importantly, these data suggest that NFAT5 participates in the regulation of intestinal homeostasis via the suppression of mTORC1/Notch signaling pathway.  相似文献   

6.
It has been reported that the proliferation and apoptosis of mammary epithelial cells affect milk production. Therefore, ensuring adequate mammary epithelial cells is expected to enhance milk production. This study is devoted to studying the effects of kisspeptin-10 (Kp-10), a peptide hormone composed of 10 amino acids, on bovine mammary epithelial cell (bMEC) proliferation and exploring the underlying mechanism of its action. bMECs were treated with various concentrations of Kp-10 (1, 10, 100, and 1,000 nM), and 100 nM Kp-10 promoted the proliferation of the bMECs. Kp-10 promoted the cell cycle transition from G1 to the S and G2 phases, increased the protein levels of Cyclin D1 and Cyclin D3, and reduced the expression levels of the p21 gene. This study also showed that inhibition of G protein-coupled receptor 54 (GPR54), AKT, mTOR, and ERK1/2 reduced the proliferation of the bMECs that had been induced by Kp-10. In addition, Kp-10 decreased the complexes formed by Rb and E2F1 and increased the expression levels of the E2F1 target genes. These results indicate that Kp-10 promotes bMEC proliferation by activating GPR54 and its downstream signaling pathways.  相似文献   

7.
Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2-associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E-expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E-expressing cells by inducing G1/S cell cycle arrest. LMW-E requires CDK2-associated kinase activity to induce mammary tumor formation by disrupting acinar development. The b-Raf-ERK1/2-mTOR signaling pathway is aberrantly activated in breast cancer and can be suppressed by combination treatment with roscovitine plus either rapamycin or sorafenib.  相似文献   

8.
During ovine pregnancy, when both estrogen and progesterone are elevated, prostacyclin (PGI2) production by uterine arteries and the key enzymes for PGI2 production, phospholipase A2 (cPLA2), cyclooxygenase 1 (COX-1), and prostacyclin synthetase (PGIS), are increased. This study was conducted to determine whether exogenous estradiol-17beta (E2beta) with or without progesterone (P4) treatment would increase cPLA2, COX-1, and PGIS protein expression in ovine uterine, mammary, and systemic (renal, mental, and coronary) arteries. Nonpregnant ovariectomized sheep received vehicle (n = 10), P(4) (0.9-g controlled internal drug release vaginal implants; n = 13), E2beta (5 microg/kg bolus followed by 6 microg x kg(-1) x day(-1); n = 10), or P4 + E2beta (n = 12). Arteries were procured on Day 10, and cPLA2, COX-1, and PGIS protein were measured by Western immunoblot analysis in endothelial isolated proteins and vascular smooth muscle (VSM). The levels of cPLA2 was increased in uterine artery endothelium in ewes treated with P4 + E2beta but was not altered by any steroid treatment in renal, coronary, mammary, or omental artery endothelium or in VSM of any evaluated artery. Similarly, COX-1 was increased in uterine artery endothelium with P4 + E2beta but was not significantly altered by treatment in other endothelium or VSM. E2beta treatment increased PGIS protein in uterine and renal artery endothelium but did not alter PGIS in other endothelial tissue. P4 increased PGIS expression in the uterine, mammary, omental, and renal artery VSM, and E2beta increased PGIS expression in the uterine and omental artery VSM. Both E2beta and P4 treatments differentially alter protein expression of the key enzymes involved in PGI2 production in different artery types and may play an important role in the control of blood flow redistribution during hormone replacement therapy.  相似文献   

9.
We sought to investigate the role of the adenosine A1 receptors (A1ARs) in white matter lesions under chronic cerebral hypoperfusion (CCH) and explore the potential repair mechanisms by activation of the receptors. A right unilateral common carotid artery occlusion (rUCCAO) method was used to construct a CCH model. 2-chloro-N6-cyclopentyladenosine (CCPA), a specific agonist of A1ARs, was used to explore the biological mechanisms of repair in white matter lesions under CCH. The expression of mammalian target of rapamycin (mTOR), phosphorylation of mTOR (P-mTOR), myelin basic protein (MBP, a marker of white matter myelination) were detected by Western-blot. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and anti-inflammatory cytokine interleukin-10 (IL-10) levels were determined by ELISA. Compared with the control groups on week 2, 4 and 6, in CCPA-treated groups, the ratio of P-mTOR/mTOR, expression of MBP and IL-10 increased markedly, while the expression of TNF-α reduced at week 6. In conclusion, A1ARs appears to reduce inflammation in white matter via the mTOR signaling pathway in the rUCCAO mice. Therefore, A1ARs may serve as a therapeutic target during the repair of white matter lesions under CCH.  相似文献   

10.
Combinatorial targeted therapies are more effective in treating cancer by blocking by-pass mechanisms or inducing synthetic lethality. However, their clinical application is hampered by resistance and toxicity. To meet this important challenge, we developed and tested a novel concept of biomarker-guided sequential applications of various targeted therapies using ErbB2-overexpressing/PTEN-low, highly aggressive breast cancer as our model. Strikingly, sustained activation of ErbB2 and downstream pathways drives trastuzumab resistance in both PTEN-low/trastuzumab-resistant breast cancers from patients and mammary tumors with intratumoral heterogeneity from genetically-engineered mice. Although lapatinib initially inhibited trastuzumab-resistant mouse tumors, tumors by-passed the inhibition by activating the PI3K/mTOR signaling network as shown by the quantitative protein arrays. Interestingly, activation of the mTOR pathway was also observed in neoadjuvant lapatinib-treated patients manifesting lapatinib resistance. Trastuzumab + lapatinib resistance was effectively overcome by sequential application of a PI3K/mTOR dual kinase inhibitor (BEZ235) with no significant toxicity. However, our p-RTK array analysis demonstrated that BEZ235 treatment led to increased ErbB2 expression and phosphorylation in genetically-engineered mouse tumors and in 3-D, but not 2-D, culture, leading to BEZ235 resistance. Mechanistically, we identified ErbB2 protein stabilization and activation as a novel mechanism of BEZ235 resistance, which was reversed by subsequent treatment with lapatinib + BEZ235 combination. Remarkably, this sequential application of targeted therapies guided by biomarker changes in the tumors rapidly evolving resistance doubled the life-span of mice bearing exceedingly aggressive tumors. This fundamentally novel approach of using targeted therapies in a sequential order can effectively target and reprogram the signaling networks in cancers evolving resistance during treatment.  相似文献   

11.
12.
hnRNP A1 acts as a critical splicing factor in regulating many alternative splicing events in various physiological and pathophysiological progressions. hnRNP A1 is capable of regulating UVB-induced hdm2 gene alternative splicing according to our previous study. However, the biological function and underlying molecular mechanism of hnRNP A1 in cell survival and cell cycle in response to UVB irradiation are still unclear. In this study, silencing hnRNP A1 expression by siRNA transfection led to decreased cell survival after UVB treatment, while promoting hnRNP A1 by lentiviruse vector resulted in increased cell survival. hnRNP A1 remarkably enhanced PI3K/Akt/mTOR signaling pathway by increasing phosphorylation of Akt, mTOR and P70S6 protein. Inhibition of PI3K/Akt signaling by LY294002 suppressed the expression of hnRNP A1. While mTOR signaling inhibitors, rapamycin and AZD8055, did not influence hnRNP A1 expression in HaCaT cells, suggesting that hnRNP A1 may be an upstream mediator of mTOR signaling. Furthermore, hnRNP A1 could alleviate UVB-provoked cell cycle arrest at G0/G1 phase and promoted cell cycle progression at G2/M phase. Our results indicate that hnRNP A1 promotes cell survival and cell cycle progression following UVB radiation.  相似文献   

13.
Combining endurance and strength training (concurrent training) may change the adaptation compared with single mode training. However, the site of interaction and the mechanisms are unclear. We have investigated the hypothesis that molecular signaling of mitochondrial biogenesis after endurance exercise is impaired by resistance exercise. Ten healthy subjects performed either only endurance exercise (E; 1-h cycling at ~65% of maximal oxygen uptake), or endurance exercise followed by resistance exercise (ER; 1-h cycling + 6 sets of leg press at 70-80% of 1 repetition maximum) in a randomized cross-over design. Muscle biopsies were obtained before and after exercise (1 and 3 h postcycling). The mRNA of genes related to mitochondrial biogenesis [(peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1)α, PGC-1-related coactivator (PRC)] related coactivator) and substrate regulation (pyruvate dehydrogenase kinase-4) increased after both E and ER, but the mRNA levels were about twofold higher after ER (P < 0.01). Phosphorylation of proteins involved in the signaling cascade of protein synthesis [mammalian target of rapamycin (mTOR), ribosomal S6 kinase 1, and eukaryotic elongation factor 2] was altered after ER but not after E. Moreover, ER induced a larger increase in mRNA of genes associated with positive mTOR signaling (cMyc and Rheb). Phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, and Akt increased similarly at 1 h postcycling (P < 0.01) after both types of exercise. Contrary to our hypothesis, the results demonstrate that ER, performed after E, amplifies the adaptive signaling response of mitochondrial biogenesis compared with single-mode endurance exercise. The mechanism may relate to a cross talk between signaling pathways mediated by mTOR. The results suggest that concurrent training may be beneficial for the adaptation of muscle oxidative capacity.  相似文献   

14.
The mammalian target of rapamycin (mTOR) integrates nutrient and mitogen signals to regulate cell growth (increased cell mass and cell size) and cell division. The immunosuppressive drug rapamycin inhibits cell cycle progression via inhibition of mTOR; however, the signaling pathways by which mTOR regulates cell cycle progression have remained poorly defined. Here we demonstrate that restoration of mTOR signaling (by using a rapamycin-resistant mutant of mTOR) rescues rapamycin-inhibited G(1)-phase progression, and restoration of signaling along the mTOR-dependent S6K1 or 4E-BP1/eukaryotic translation initiation factor 4E (eIF4E) pathways provides partial rescue. Furthermore, interfering RNA-mediated reduction of S6K1 expression or overexpression of mTOR-insensitive 4E-BP1 isoforms that block eIF4E activity inhibit G(1)-phase progression individually and additively. Thus, the activities of both the S6K1 and 4E-BP1/eIF4E pathways are required for and independently mediate mTOR-dependent G(1)-phase progression. In addition, overexpression of constitutively active mutants of S6K1 or wild-type eIF4E accelerates serum-stimulated G(1)-phase progression, and stable expression of wild-type S6K1 confers a proliferative advantage in low-serum-containing media, suggesting that the activity of each of these pathways is limiting for cell proliferation. These data demonstrate that, as for the regulation of cell growth and cell size, the S6K1 and 4E-BP1/eIF4E pathways each represent critical mediators of mTOR-dependent cell cycle control.  相似文献   

15.
The tumor suppressor kinase LKB1 is mutated in a broad range of cancers however, the role of LKB1 mammary gland tumorigenesis is not fully understood. Evaluation of human breast cancer tissue microarrays, indicate that 31% of HER2 positive samples lacked LKB1 expression. To expand on these observations, we crossed STK11fl/fl mice with mice genetically engineered to express activated Neu/HER2-MMTV-Cre (NIC) under the endogenous Erbb2 promoter, to generate STK11−/−/NIC mice. In these mice, the loss of lkb1 expression reduced the latency of ErbB2-mediated tumorigenesis compared to the latency of tumorigenesis in NIC mice alone. Analysis of STK11−/−/NIC mammary tumors revealed hyperactivation of mammalian target of rapamycin (mTOR) through both mTORC1 and mTORC2 pathways as determined by the phosphorylation status of ribosomal protein S6 and AKT. Furthermore, STK11−/−/NIC mammary tumors had elevated ATP levels along with changes in metabolic enzymes and metabolites. The treatment of primary mammary tumor cells with specific mTOR inhibitors AZD8055 and Torin1, that target both mTOR complexes, attenuated mTOR activity and decreased expression of glycolytic enzymes. Our findings underscore the existence of a molecular interplay between LKB1-AMPK-mTORC1 and ErbB2-AKT-mTORC2 pathways with mTOR at its epicenter, suggestive that loss of LKB1 expression may serve as a marker for hyperactivated mTOR in HER2 positive breast cancer and warranting further investigation into therapeutics that target LKB1-AMPK-mTOR and glycolytic pathways.  相似文献   

16.
Cadmium (Cd), a highly toxic environmental pollutant, induces neurodegenerative diseases. Recently we have demonstrated that Cd induces neuronal apoptosis in part through activation of the mammalian target of rapamycin (mTOR) pathway. However, the underlying mechanism is unknown. Here we show that Cd induces the generation of reactive oxygen species (ROS) by upregulating the expression of NADPH oxidase 2 and its regulatory proteins (p22(phox), p67(phox), p40(phox), p47(phox), and Rac1) in PC12 and SH-SY5Y cells. Cd induction of ROS contributed to the activation of mTOR signaling, as pretreatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, prevented this event. Further studies reveal that Cd induction of ROS increased phosphorylation of the type I insulin-like growth factor receptor (IGFR) β subunit, which was abrogated by NAC. Wortmannin, a phosphoinositide 3'-kinase (PI3K) inhibitor, partially attenuated Cd-induced phosphorylation of Akt, p70 S6 kinase 1, and eukaryotic initiation factor 4E-binding protein 1, as well as apoptosis of the neuronal cells. In addition, overexpression of wild-type phosphatase and tensin homologue deleted on chromosome 10 (PTEN) or pretreatment with aminoimidazole carboxamide ribonucleotide, an AMP-activated protein kinase (AMPK) activator, partially prevented Cd-induced ROS and activation of the mTOR pathway, as well as cell death. The results indicate that Cd induction of ROS activates mTOR signaling, leading to neuronal cell death, in part by activating the positive regulators IGFR/PI3K and by inhibiting the negative regulators PTEN/AMPK. The findings suggest that inhibitors of PI3K and mTOR, activators of AMPK, or antioxidants may be exploited for the prevention of Cd-induced neurodegenerative diseases.  相似文献   

17.
Endurance training represents one extreme in the continuum of skeletal muscle plasticity. The molecular signals elicited in response to acute and chronic exercise and the integration of multiple intracellular pathways are incompletely understood. We determined the effect of 10 days of intensified cycle training on signal transduction in nine inactive males in response to a 1-h acute bout of cycling at the same absolute workload (164 +/- 9 W). Muscle biopsies were taken at rest and immediately and 3 h after the acute exercise. The metabolic signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), demonstrated divergent regulation by exercise after training. AMPK phosphorylation increased in response to exercise ( approximately 16-fold; P < 0.05), which was abrogated posttraining (P < 0.01). In contrast, mTOR phosphorylation increased in response to exercise ( approximately 2-fold; P < 0.01), which was augmented posttraining (P < 0.01) in the presence of increased mTOR expression (P < 0.05). Exercise elicited divergent effects on mitogen-activated protein kinase (MAPK) pathways after training, with exercise-induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation being abolished (P < 0.01) and p38 MAPK maintained. Finally, calmodulin kinase II (CaMKII) exercise-induced phosphorylation and activity were maintained (P < 0.01), despite increased expression ( approximately 2-fold; P < 0.05). In conclusion, 10 days of intensified endurance training attenuated AMPK, ERK1/2, and mTOR, but not CaMKII and p38 MAPK signaling, highlighting molecular pathways important for rapid functional adaptations and maintenance in response to intensified endurance exercise and training.  相似文献   

18.
Xu  Ming  Zhou  Yuwen  Fan  Sihua  Zhang  Minghui  Gao  Xuejun 《Amino acids》2023,55(2):243-252

Cullin5 (Cul5) protein can regulate multiple signaling pathways; however, it is still largely unknown the role and molecule mechanism of Cul5 in regulation of the mTOR signaling. In this study, we determined the effect of Cul5 on the proliferation of HC11 cells, a mouse mammary epithelial cell line, and explored the corresponding molecular mechanism. We found that Cul5 was highly expressed in mammary gland tissues in the lactation stage compared with that in puberty and involution. Using gene knockdown and activation methods, we showed that Cul5 promoted proliferation of HC11 cells, mRNA expression and protein phosphorylation of mTOR. Taurine (Tau) affected Cul5 mRNA and protein levels in a dose-dependent manner. Cul5 localized to the nucleus and knockdown of Cul5 almost totally blocked the stimulation of Tau on mTOR mRNA expression and protein phosphorylation. PI3K inhibition almost totally abolished the stimulation of Tau on Cul5 expression. In summary, our data uncover that Cul5 is a positive regulator of proliferation of HC11 cells, and mediates the stimulation of Tau on mRNA expression and subsequent protein phosphorylation of mTOR. Our data lay a new theoretical foundation for regulating mammary cell proliferation and promoting milk yield.

  相似文献   

19.
Cardiomyocyte hypertrophy differs according to the stress exerted on the myocardium. While pressure overload-induced cardiomyocyte hypertrophy is associated with depressed contractile function, physiological hypertrophy after exercise training associates with preserved or increased inotropy. We determined the activation state of myocardial Akt signaling with downstream substrates and fetal gene reactivation in exercise-induced physiological and pressure overload-induced pathological hypertrophies. C57BL/6J mice were either treadmill trained for 6 weeks, 5 days/week, at 85-90% of maximal oxygen uptake (VO(2max)), or underwent transverse aortic constriction (TAC) for 1 or 8 weeks. Total and phosphorylated protein levels were determined with SDS-PAGE, and fetal genes by real-time RT-PCR. In the physiologically hypertrophied heart after exercise training, total Akt protein level was unchanged, but Akt was chronically hyperphosphorylated at serine 473. This was accompanied by activation of the mammalian target of rapamycin (mTOR), measured as phosphorylation of its two substrates: the ribosomal protein S6 kinase-1 (S6K1) and the eukaryotic translation initiation factor-4E binding protein-1 (4E-BP1). Exercise training did not reactivate the fetal gene program (beta-myosin heavy chain, atrial natriuretic factor, skeletal muscle actin). In contrast, pressure overload after TAC reactivated fetal genes already after 1 week, and partially inactivated the Akt/mTOR pathway and downstream substrates after 8 weeks. In conclusion, changes in opposite directions of the myocardial Akt/mTOR signal pathway appears to distinguish between physiological and pathological hypertrophies; exercise training associating with activation and pressure overload associating with inactivation of the Akt/mTOR pathway.  相似文献   

20.
Rat mammary carcinogenesis models have been used extensively to study breast cancer initiation, progression, prevention, and intervention. Nevertheless, quantitative molecular data on epithelial cell differentiation in mammary glands of untreated and carcinogen-exposed rats is limited. Here, we describe the characterization of rat mammary epithelial cells (RMECs) by multicolor flow cytometry using antibodies against cell surface proteins CD24, CD29, CD31, CD45, CD49f, CD61, Peanut Lectin, and Thy-1, intracellular proteins CK14, CK19, and FAK, along with phalloidin and Hoechst staining. We identified the luminal and basal/myoepithelial populations and actively dividing RMECs. In inbred rats susceptible to mammary carcinoma development, we quantified the changes in differentiation of the RMEC populations at 1, 2, and 4 weeks after exposure to mammary carcinogens DMBA and MNU. DMBA exposure did not alter the percentage of basal or luminal cells, but upregulated CD49f (Integrin α6) expression and increased cell cycle activity. MNU exposure resulted in a temporary disruption of the luminal/basal ratio and no CD49f upregulation. When comparing DMBA- or MNU-induced mammary carcinomas, the RMEC differentiation profiles are indistinguishable. The carcinomas compared with mammary glands from untreated rats, showed upregulation of CD29 (Integrin β1) and CD49f expression, increased FAK (focal adhesion kinase) activation especially in the CD29hi population, and decreased CD61 (Integrin β3) expression. This study provides quantitative insight into the protein expression phenotypes underlying RMEC differentiation. The results highlight distinct RMEC differentiation etiologies of DMBA and MNU exposure, while the resulting carcinomas have similar RMEC differentiation profiles. The methodology and data will enhance rat mammary carcinogenesis models in the study of the role of epithelial cell differentiation in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号