首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Notch ligands are membrane-spanning proteins made of a large extracellular region, a transmembrane segment, and a approximately 100-200 residue cytoplasmic tail. The intracellular region of Jagged-1, one of the five ligands to Notch receptors in man, mediates protein-protein interactions through the C-terminal PDZ binding motif, is involved in receptor/ligand endocytosis triggered by mono-ubiquitination, and, as a consequence of regulated intramembrane proteolysis, can be released into the cytosol as a signaling fragment. The intracellular region of Jagged-1 may then exist in at least two forms: as a membrane-tethered protein located at the interface between the membrane and the cytoplasm, and as a soluble nucleocytoplasmic protein. Here, we report the characterization, in different environments, of a recombinant protein corresponding to the human Jagged-1 intracellular region (J1_tmic). In solution, J1_tmic behaves as an intrinsically disordered protein, but displays a significant helical propensity. In the presence of SDS micelles and phospholipid vesicles, used to mimick the interface between the plasma membrane and the cytosol, J1_tmic undergoes a substantial conformational change. We show that the interaction of J1_tmic with SDS micelles drives partial helix formation, as measured by circular dichroism, and that the helical content depends on pH in a reversible manner. An increase in the helical content is observed also in the presence of vesicles made of negatively charged, but not zwitterionic, phospholipids. We propose that this partial folding may have implications in the interactions of J1_tmic with its binding partners, as well as in its post-translational modifications.  相似文献   

2.
Jagged‐1, one of the five Notch ligands in man, is a membrane‐spanning protein made of a large extracellular region and a 125‐residue cytoplasmic tail bearing a C‐terminal PDZ recognition motif (1213RMEYIV1218). Binding of Jagged‐1 intracellular region to the PDZ domain of afadin, a protein located at cell–cell adherens junctions, couples Notch signaling with the adhesion system and the cytoskeleton. Using NMR chemical shift perturbation and surface plasmon resonance, we studied the interaction between the PDZ domain of afadin (AF6_PDZ) and a series of polypeptides comprising the PDZ‐binding motif. Chemical shift mapping of AF6_PDZ upon binding of ligands of different length (6, 24, and 133 residues) showed that the interaction is strictly local and involves only the binding groove in the PDZ. The recombinant protein corresponding to the entire intracellular region of Jagged‐1, J1_ic, is mainly disordered in solution, and chemical shift mapping of J1_ic in the presence of AF6_PDZ showed that binding is not coupled to folding. Binding studies on a series of 24‐residue peptides phosphorylated at different positions showed that phosphorylation of the tyrosine at position ‐2 of the PDZ‐binding motif decreases its affinity for AF6_PDZ, and may play a role in the modulation of this interaction. Finally, we show that the R1213Q mutation located in the PDZ‐binding motif and associated with extrahepatic biliary atresia increases the affinity for AF6_PDZ, suggesting that this syndrome may arise from an imbalance in the coupling of Notch signaling to the cytoskeleton. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Dishevelled (Dvl) is the essential signal transduction component of both canonical and non-canonical Wnt signaling pathways. The cysteine-rich protein Idax acts as a negative regulator of Wnt signaling in mammals by interaction with Dvl in the region of the PDZ domain. In an effort to clarify the structural basis of this interaction, we used nuclear magnetic resonance spectroscopy to study the interaction of the Dvl PDZ domain with Idax. We first confirmed that the C-terminal region of Idax consisting of residues 109-198 binds to the PDZ domain of mouse Dvl-1 at the conventional C-terminal peptide-binding groove. However, instead of the C-terminus of Idax, we showed that a peptide of an internal sequence of Idax containing a KTXXXI motif is important in the interaction with a binding affinity estimated at 56 microM. Such internal motif identified in this study suggests a new type of sequence motif recognition for Dvl PDZ domain.  相似文献   

4.
Wang D  Song Y  Li J  Wang C  Li F 《Biochimica et biophysica acta》2011,1808(6):1639-1644
DMT1 is an integral membrane protein with 12 putative transmembrane domains. As a divalent metal ion transporter, it plays an important role in metal ion homeostasis from bacteria to human. Loss-function mutations at the conserved motif DPGN located within the first transmembrane domain (TMD1) of DMT1 indicate the significance of TMD1 in the biological function of the protein. In the present work, we study the structure, topology and metal ion binding of DMT1-TMD1 peptide by nuclear magnetic resonance using sodium dodecyl sulfate and dodecylphosphocholine micelles as membrane mimics. We find that the peptide forms an α-helix-extended segment-α-helix configuration in which the motif DPGN locates at the central flexible region. The N-terminal part of the peptide is deeply embedded in micelles, while the motif section and the C-terminal part are close to the surface of micelles. The peptide can bind to Mn2+ and Co2+ ions by the side chains of the negatively charged residues in the motif section and the C-terminal part of TMD1. The crucial role of the central flexible region and the C-terminal part of TMD1 in metal ion capture is confirmed by the binding of the N-terminal part truncated TMD1 to metal ions.  相似文献   

5.
Helix-8 (Hx8) is a structurally conserved amphipathic helical motif in class-A GPCRs, adjacent to the C-terminal sequence that is responsible for PDZ-domain-recognition. The Hx8 segment in the dopamine D2 receptor (D2R) constitutes the C-terminal segment and we investigate its role in the function of D2R by studying the interaction with the PDZ-containing GIPC1 using homology models based on the X-ray structures of very closely related analogs: the D3R for the D2R model, and the PDZ domain of GIPC2 for GIPC1–PDZ. The mechanism of this interaction was investigated with all-atom unbiased molecular dynamics (MD) simulations that reveal the role of the membrane in maintaining the helical fold of Hx8, and with biased MD simulations to elucidate the energy drive for the interaction with the GIPC1–PDZ. We found that it becomes more favorable energetically for Hx8 to adopt the extended conformation observed in all PDZ–ligand complexes when it moves away from the membrane, and that C-terminus palmitoylation of D2R enhanced membrane penetration by the Hx8 backbone. De-palmitoylation enables Hx8 to move out into the aqueous environment for interaction with the PDZ domain. All-atom unbiased MD simulations of the full D2R–GIPC1-PDZ complex in sphingolipid/cholesterol membranes show that the D2R carboxyl C-terminus samples the region of the conserved GFGL motif located on the carboxylate-binding loop of the GIPC1–PDZ, and the entire complex distances itself from the membrane interface. Together, these results outline a likely mechanism of Hx8 involvement in the interaction of the GPCR with PDZ-domains in the course of signaling.  相似文献   

6.
PDZ domains are protein interaction domains that are found in cytoplasmic proteins involved in signaling pathways and subcellular transport. Their roles in the control of cell growth, cell polarity, and cell adhesion in response to cell contact render this family of proteins targets during the development of cancer. Targeting of these network hubs by the oncoprotein E6 of “high-risk” human papillomaviruses (HPVs) serves to effect the efficient disruption of cellular processes. Using NMR, we have solved the three-dimensional solution structure of an extended construct of the second PDZ domain of MAGI-1 (MAGI-1 PDZ1) alone and bound to a peptide derived from the C-terminus of HPV16 E6, and we have characterized the changes in backbone dynamics and hydrogen bonding that occur upon binding. The binding event induces quenching of high-frequency motions in the C-terminal tail of the PDZ domain, which contacts the peptide upstream of the canonical X-[T/S]-X-[L/V] binding motif. Mutations designed in the C-terminal flanking region of the PDZ domain resulted in a significant decrease in binding affinity for E6 peptides. This detailed analysis supports the notion of a global response of the PDZ domain to the binding event, with effects propagated to distal sites, and reveals unexpected roles for the sequences flanking the canonical PDZ domain boundaries.  相似文献   

7.
We have identified the multiple PDZ domain containing protein (MUPP-1 or MPDZ) as a novel binding partner of the human c-Kit. c-Kit binds specifically to the 10th PDZ domain of MUPP-1 via its C-terminal sequence. Furthermore, a kinase negative-mutant receptor interacted more strongly with MUPP-1 than the wild-type c-Kit. Strikingly, a constitutively activated c-Kit (D816V-Kit) did not bind to MUPP-1, although this oncogenic form retains the PDZ binding motif 'HDDV' at the C-terminal end. Deletion of V967 of c-Kit abolished binding to MUPP-1 and drastically reduced its tyrosine kinase activity, suggesting that the structure of the C-terminal tail of c-Kit influences its enzymatic activity.  相似文献   

8.
Human-β-defensins HBD-1-3 are important components of the innate immune system. Synthetic peptides Phd-1-3 with a single disulphide bond, spanning the cationic C-terminal region of HBD-1-3, have antimicrobial activity. The interaction of Phd-1-3 with model membranes was investigated using isothermal titration calorimetry (ITC) and steady-state fluorescence polarization to understand the biophysical basis for the mechanism of antimicrobial action. Calorimetric titration of POPE:POPG (7:3) vesicles with peptides at 25°C and 37°C showed complex profiles with two distinct regions of heat changes. The data indicate binding of Phd-1-3 at 37°C to both negative and zwitterionic lipid vesicles is exothermic with low enthalpy values (ΔH~-1.3 to -2.8kcal/mol) as compared to amphipathic helical antibacterial peptides. The adsorption of peptides to negatively charged lipid membranes is modulated by electrostatic interactions that are described by surface partition equilibrium model using Gouy-Chapman theory. However, this model could not explain the isotherms of peptide binding to zwitterionic lipid vesicles. Fluorescence polarization of TMA-DPH (1-[4-(trimethylammonio) phenyl]-6-phenyl-1,3,5-hexatriene) and DPH (1,6-diphenyl-1,3,5-hexatriene) located in the head group and acyl chain region respectively, indicates that the peptides interact with interfacial region of negatively charged membranes. Based on the results obtained, we conclude that adsorption of cationic peptides Phd-1-3 on lipid surface do not result in conformational change or pore formation. It is proposed that interaction of Phd-1-3 with the negatively charged lipid head group causes membrane destabilization, which in turn affects the efficient functioning of cytoplasmic membrane proteins in bacteria, resulting in cell death.  相似文献   

9.
Component PP3 is a phosphoglycoprotein isolated from bovine milk with unknown biological function, which displays in its C-terminal region a basic amphipathic alpha-helix, a feature often involved in membrane association. According to that, the behaviour of PP3 and of a synthetic peptide from the C-terminal domain (residues 113-135) was investigated in lipid environment. Conductance measurements indicated that the peptide was able to associate and form channels in planar lipid bilayers composed of neutral or charged phospholipids. Electrostatic interactions seemed to promote voltage-dependent channel formation but this was not absolutely required since the pore-forming ability of the 113-135 C-terminal peptide was also detected with the zwitterionic lipid bilayer. Additionally, a spectroscopic study using circular dichroism argues that the peptide adopts an alpha-helical conformation in interaction with neutral or charged micelles. Thus, the conducting aggregates in bilayers might be composed of a bundle of peptides in helical conformation. Besides, similar conductance measurements performed with the whole PP3 protein did not induce any channel fluctuations. However, with the latter, an early breakdown of the bilayers occurred, a finding that can be tentatively explained by a massive incorporation of PP3. In the light of the present results, it could be inferred that PP3 membrane attachment may be achieved by oligomerization of the C-terminal amphipathic helical region.  相似文献   

10.
In the mitogen activated protein kinase (MAPK) cascades of budding yeast, the scaffold protein Ste5 is recruited to the plasma membrane to transmit pheromone induced signal. A region or domain of Ste5 i.e. residues P44-R67, referred here as Ste5PM24, has been known to be involved in direct interactions with the membrane. In order to gain structural insights into membrane interactions of Ste5, here, we have investigated structures and interactions of two synthetic peptide fragments of Ste5, Ste5PM24, and a hyperactive mutant, Ste5PM24LM, by NMR, ITC, and fluorescence spectroscopy, with lipid membranes. We observed that Ste5PM24 predominantly interacted only with the anionic lipid vesicles. By contrast, Ste5PM24LM exhibited binding with negatively charged as well as zwitterionic or mixed lipid vesicles. Binding of Ste5 peptides with the negatively charged lipid vesicles were primarily driven by hydrophobic interactions. NMR studies revealed that Ste5PM24 assumes dynamic or transient conformations in zwitterionic dodecylphosphocholine (DPC) micelles. By contrast, NMR structure, obtained in anionic sodium dodecyl sulphate (SDS), demonstrated amphipathic helical conformations for the central segment of Ste5PM24. The hydrophobic surface of the helix was found to be buried inside the micelles. Taken together, these results provide important insights toward the structure and specificity determinants of the scaffold protein interactions with the plasma membrane.  相似文献   

11.
Apolipoprotein E (apoE) plays a major role in the transport and metabolism of lipid by acting as a ligand for low density lipoprotein-receptors. The amphipathic helical regions of its C-terminal domain are necessary for the lipoprotein binding and assembly of nascent lipoprotein particles. Lipoproteins in the plasma are known to possess a net negative charge, determined by both its protein and lipid components, which regulates the metabolism of lipoproteins. The role of membrane surface charge on the interaction of apoE has not been studied previously. Also the importance of individual amphipathic helical regions of its C-terminal domain in binding to negatively charged lipid membrane is not addressed. In this study we have compared the interaction of four peptide segments of apoE C-terminal domain (apoE(202-223), apoE(223-244), apoE(245-266), and apoE(268-289)) with zwitterionic and negatively charged model membranes by employing UV-visible and fluorescence spectroscopy, circular dichroism, and native PAGE analysis. Our results show that the peptide sequence 202-223, 245-266 and 268-289 of apoE has higher affinity towards negatively charged lipid membrane and are independently capable of forming lipoprotein particles of 17 ± 2 nm Stokes diameter. The results suggest that surface charge of lipoprotein regulates its metabolism possibly by modulating the recruitment of apoE on its surface.  相似文献   

12.
βPIX (p21-activated kinase interacting exchange factor) and Shank/ProSAP protein form a complex acting as a protein scaffold that integrates signaling pathways and regulates postsynaptic structure. Complex formation is mediated by the C-terminal PDZ binding motif of βPIX and the Shank PDZ domain. The coiled-coil (CC) domain upstream of the PDZ binding motif allows multimerization of βPIX, which is important for its physiological functions. We have solved the crystal structure of the βPIX CC-Shank PDZ complex and determined the stoichiometry of complex formation. The βPIX CC forms a 76-Å-long parallel CC trimer. Despite the fact that the βPIX CC exposes three PDZ binding motifs in the C-termini, the βPIX trimer associates with a single Shank PDZ. One of the C-terminal ends of the CC forms an extensive β-sheet interaction with the Shank PDZ, while the other two ends are not involved in ligand binding and form random coils. The two C-terminal ends of βPIX have significantly lower affinity than the first PDZ binding motif due to the steric hindrance in the C-terminal tails, which results in binding of a single PDZ domain to the βPIX trimer. The structure shows canonical class I PDZ binding with a β-sheet interaction extending to position − 6 of βPIX. The βB-βC loop of Shank PDZ undergoes a conformational change upon ligand binding to form the β-sheet interaction and to accommodate the bulky side chain of Trp − 5. This structural study provides a clear picture of the molecular recognition of the PDZ ligand and the asymmetric association of βPIX CC and Shank PDZ.  相似文献   

13.
Kindlins-1,2 and 3 are FERM domain-containing cytosolic proteins involved in the activation and regulation of integrin-mediated cell adhesion. Apart from binding to integrin β cytosolic tails, kindlins and the well characterized integrin-activator talin bind membrane phospholipids. The ubiquitin-like F1 sub-domain of the FERM domain of talin contains a short loop that binds to the lipid membrane. By contrast, the F1 sub-domain of kindlins contains a long loop demonstrated binding to the membrane. Here, we report structural characterization and lipid interactions of the 83-residue F1 loop of kindlin-3 using NMR and optical spectroscopy methods. NMR studies demonstrated that the F1 loop of kindlin-3 is globally unfolded but stretches of residues assuming transient helical conformations could be detected in aqueous solution. We mapped membrane binding interactions of the F1 loop with small unilamellar vesicles (SUVs) containing either zwitterionic lipids or negatively charged lipids using 15N-1H HSQC titrations. These experiments revealed that the F1 loop of kindlin-3 preferentially interacted with the negatively charged SUVs employing almost all of the residues. By contrast, only fewer residues appeared to be interacted with SUVs containing neutral lipids. Further, CD and NMR data suggested stabilization of helical conformations and predominant resonance perturbations of the F1 loop in detergent containing solutions. Conformations of an isolated N-terminal peptide fragment, or EK21, of the F1 loop, containing a poly-Lys sequence motif, important for membrane interactions, were also investigated in detergent solutions. EK21 adopted a rather extended or β-type conformations in complex with negatively charged SDS micelles. To our knowledge, this is the first report describing the conformations and residue-specific interactions of kindlin F1 loop with lipids. These data therefore provide important insights into the interactions of kindlin FERM domain with membrane lipids that contribute toward the integrin activating property.  相似文献   

14.
MRP2, a member of the ABC protein superfamily, functions as an ATP-dependent export pump for anionic conjugates in the apical membranes of epithelial cells. It has been reported that the trafficking of MRP2 is modulated by PKC. Adjacent to the C-terminal PDZ binding motif, which may be involved in the targeting of MRP2, we found a potential PKC phosphorylation site (Ser(1542)). Therefore, we examined the interaction of MRP2 and its phosphorylation-mimicking mutants with different PDZ proteins (EBP50, E3KARP, PDZK1, IKEPP, beta2-syntrophin, and SAP-97). The binding of these PDZ proteins to CFTR and ABCA1, other ABC proteins, possessing PDZ binding motif, was also studied. We observed a strong binding of apically localized PDZ proteins to both MRP2 and CFTR, whereas beta2-syntrophin exhibited binding only to ABCA1. The phosphorylation-mimicking MRP2 mutant and a phosphorylated C-terminal MRP2 peptide showed significantly increased binding to IKEPP, EBP50, and both individual PDZ domains of EBP50. Our results suggest that phosphorylation of the MRP2 PDZ binding motif has a profound effect on the PDZ binding of MRP2.  相似文献   

15.
《Plant science》1988,56(2):117-122
The lipid specificity of the plasma membrane ATPases from oat roots and yeast has been investigated by reconstituting delipidated enzyme with phospholipid vesicles and with micelles of lysophospholipids and other detergents. The plant ATPase is activated by Triton X-100 and by all phospholipid and lysophospholipid species, exhibiting only a slight preference for zwitterionic polar heads (phosphorylcholine and phosphorylethanolamine). No unsaturation is required on the hydrophobic chain. On the other hand, the yeast ATPase requires a negatively charged polar head (with preference for phosphorylglycerol and phosphorylinositol) and an unsaturated hydrophobic chain.  相似文献   

16.
The N-terminal domain of the GLP-1 receptor binds the putative helical region of the peptide agonists, GLP-1 and exendin-4. Here we demonstrate that this interaction also determines the magnitude of a separate interaction between the N-terminus of these peptides and the receptor's core domain. Enhancing the pre-formation of the C-terminal Trp-Cage motif of exendin-4, a motif critical for high-affinity binding, results in no improvement in receptor affinity, suggesting that this motif forms after the initial peptide-receptor binding event.  相似文献   

17.
Hemolysin E (HlyE) is a 34 kDa protein toxin, recently isolated from a pathogenic strain of Escherichia coli, which is believed to exert its toxic activity via formation of pores in the target cell membrane. With the goal of understanding the involvement of different segments of hemolysin E in the membrane interaction and assembly of the toxin, a conserved, amphipathic leucine zipper-like motif has been identified. In order to evaluate the possible structural and functional roles of this segment in HlyE, a 30-residue peptide (H-205) corresponding to the leucine zipper motif (amino acid 205-234) and two mutant peptides of the same size were synthesized and labeled by fluorescent probes at their N termini. The results show that the wild-type H-205 binds to both zwitterionic (PC/Chol) and negatively charged (PC/PG/Chol) phospholipid vesicles and also self-assemble therein. Detailed membrane-binding experiments revealed that this synthetic motif (H-205) formed large aggregates and inserted into the bilayer of only negatively charged lipid vesicles but not of zwitterionic membrane. Although both the mutants bound to zwitterionic and negatively charged lipid vesicles, neither of them inserted into the lipid bilayers nor assembled in any of these lipid vesicles. Furthermore, H-205 adopted a significant helical structure in membrane mimetic environments and induced the permeation of monovalent ions and release of entrapped calcein across the phospholipid vesicles more efficiently than the mutant peptides. The results presented here indicate that this H-205 (amino acid 205-234) segment may be an important structural element in hemolysin E, which could play a significant role in the binding and assembly of the toxin in the target cell membrane and its destabilization.  相似文献   

18.
A ubiquitous feature of neurotransmitter transporters is the presence of short C-terminal PDZ binding motifs acting as important trafficking elements. Depending on their very C-terminal sequences, PDZ binding motifs are usually divided into at least three groups; however this classification has recently been questioned. To introduce a 3D aspect into transporter’s PDZ motif similarities, we compared their interactions with the natural collection of all 13 PDZ domains of the largest PDZ binding protein MUPP1. The GABA, glycine and serotonin transporters showed unique binding preferences scattered over one or several MUPP1 domains. On the contrary, the dopamine and norepinephrine transporter PDZ motifs did not show any significant affinity to MUPP1 domains. Interestingly, despite their terminal sequence diversity all three GABA transporter PDZ motifs interacted with MUPP1 domain 7. These results indicate that similarities in binding schemes of individual transporter groups might exist. Results also suggest the existence of variable PDZ binding modes, allowing several transporters to interact with identical PDZ domains and potentially share interaction partners in vivo.  相似文献   

19.
Pegan S  Tan J  Huang A  Slesinger PA  Riek R  Choe S 《Biochemistry》2007,46(18):5315-5322
Control of surface expression of inwardly rectifying potassium (Kir) channels is important for regulating membrane excitability. Kir2 channels have been shown to interact directly with PDZ-containing proteins in the postsynaptic density (PSD). These scaffold proteins, such as PSD95, bind to Kir2.1 channels via a PDZ-binding motif (T/S-x-Phi) in the C-terminal tail (SEI428). By utilizing a multidimensional solution NMR approach, we show that the previously unresolved structure of Kir2.1 tail (residues 372-428) is highly flexible. Using in vitro binding assays, we determined that shortening the flexible tail of Kir2.1 preceding the C-terminal region (residues 414-428) does not significantly disrupt PDZ binding. We also investigated which amino acids in the Kir2.1 tail associated with PSD95 PDZ1,2 by NMR spectroscopy, revealing that a stretch of 12 C-terminal amino acids is involved in interaction with both PDZ domains (residues 417-428). Deletion of the 11 amino acids preceding the C-terminal tail, Delta414-424, completely disrupts binding to PSD95 PDZ1,2. Therefore, the molecular interfaces formed between PDZ domains and Kir2.1 tail involve regions outside the previously identified binding motif (SEI428) and may be important for additional channel-specific interactions with associating PDZ-containing proteins.  相似文献   

20.
The PSD95/Dlg/ZO-1 (PDZ) domain-containing protein zonula occludens-1 (ZO-1) selectively localizes to the cytoplasmic basis of the slit diaphragm, a specialized cell-cell contact in between glomerular podocytes necessary to prevent the loss of protein in the urine. However, the function of ZO-1 at the slit diaphragm has remained elusive. Deletion of Neph1, a slit diaphragm protein of the immunoglobulin superfamily with a cytoplasmic PDZ binding site, causes proteinuria in mice. We demonstrate now that Neph1 binds ZO-1. This interaction was mediated by the first PDZ domain of ZO-1 and involved the conserved PDZ domain binding motif present in the carboxyl terminus of the three known Neph family members. Furthermore, Neph1 co-immunoprecipitates with ZO-1 from lysates of mouse kidneys, demonstrating that this interaction occurs in vivo. Both deletion of the PDZ binding motif of Neph1 as well as threonine-to-glutamate mutation of the threonine within the binding motif abrogated binding of ZO-1, suggesting that phosphorylation may regulate this interaction. ZO-1 binding was associated with a strong increase in tyrosine phosphorylation of the cytoplasmic tail of Neph1 and dramatically accelerated the ability of Neph1 to induce signal transduction. Thus, our data suggest that ZO-1 may organize Neph proteins and recruit signal transduction components to the slit diaphragm of podocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号