首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrauterine growth restriction (IUGR) is closely linked with metabolic diseases, appetite disorders and obesity at adulthood. Leptin, a major adipokine secreted by adipose tissue, circulates in direct proportion to body fat stores, enters the brain and regulates food intake and energy expenditure. Deficient leptin neuronal signalling favours weight gain by affecting central homeostatic circuitry. The aim of this study was to determine if leptin resistance was programmed by perinatal nutritional environment and to decipher potential cellular mechanisms underneath.We clearly demonstrated that 5 months old IUGR rats develop a decrease of leptin sentivity, characterized by no significant reduction of food intake following an intraperitoneal injection of leptin. Apart from the resistance to leptin injection, results obtained from IUGR rats submitted to rapid catch-up growth differed from those of IUGR rats with no catch-up since we observed, for the first group only, fat accumulation, increased appetite for food rich in fat and increased leptin synthesis. Centrally, the leptin resistant state of both groups was associated with a complex and not always similar changes in leptin receptor signalling steps. Leptin resistance in IUGR rats submitted to rapid catch-up was associated with alteration in AKT and mTOR pathways. Alternatively, in IUGR rats with no catch-up, leptin resistance was associated with low hypothalamic expression of LepRa and LepRb. This study reveals leptin resistance as an early marker of metabolic disorders that appears before any evidence of body weight increase in IUGR rats but whose mechanisms could depend of nutritional environment of the perinatal period.  相似文献   

2.
Adipose tissue performs complex metabolic and endocrine functions. This review will focus on the recent literature on the biology and actions of three adipocyte hormones involved in the control of energy homeostasis and insulin action, leptin, acylation-stimulating protein, and adiponectin, and mechanisms regulating their production. Results from studies of individuals with absolute leptin deficiency (or receptor defects), and more recently partial leptin deficiency, reveal leptin's critical role in the normal regulation of appetite and body adiposity in humans. The primary biological role of leptin appears to be adaptation to low energy intake rather than a brake on overconsumption and obesity. Leptin production is mainly regulated by insulin-induced changes of adipocyte metabolism. Consumption of fat and fructose, which do not initiate insulin secretion, results in lower circulating leptin levels, a consequence which may lead to overeating and weight gain in individuals or populations consuming diets high in energy derived from these macronutrients. Acylation-stimulating protein acts as a paracrine signal to increase the efficiency of triacylglycerol synthesis in adipocytes, an action that results in more rapid postprandial lipid clearance. Genetic knockout of acylation-stimulating protein leads to reduced body fat, obesity resistance and improved insulin sensitivity in mice. The primary regulator of acylation-stimulating protein production appears to be circulating dietary lipid packaged as chylomicrons. Adiponectin increases insulin sensitivity, perhaps by increasing tissue fat oxidation resulting in reduced circulating fatty acid levels and reduced intramyocellular or liver triglyceride content. Adiponectin and leptin together normalize insulin action in severely insulin-resistant animals that have very low levels of adiponectin and leptin due to lipoatrophy. Leptin also improves insulin resistance and reduces hyperlipidemia in lipoatrophic humans. Adiponectin production is stimulated by agonists of peroxisome proliferator-activated receptor-gamma; an action may contribute to the insulin-sensitizing effects of this class of compounds. The production of all three hormones is influenced by nutritional status. These adipocyte hormones, the pathways controlling their production, and their receptors represent promising targets for managing obesity, hyperlipidemia, and insulin resistance.  相似文献   

3.
Leptin, a polypeptide hormone produced mainly by adipocytes, has diverse effects in both the brain and peripheral organs, including suppression of feeding. Other than mediating leptin transport across the blood-brain barrier, the role of the endothelial leptin receptor remains unclear. We recently generated a mutant mouse strain lacking endothelial leptin receptor signaling, and showed that there is an increased uptake of leptin by brain parenchyma after its delivery by in situ brain perfusion. Here, we tested the hypothesis that endothelial leptin receptor mutation confers partial resistance to diet-induced obesity. These ELKO mice had similar body weight and percent fat as their wild-type littermates when fed with rodent chow, but blood concentrations of leptin were significantly elevated. In response to a high-fat diet, wild-type mice had a greater gain of body weight and fat than ELKO mice. As shown by metabolic chamber measurement, the ELKO mice had higher oxygen consumption, carbon dioxide production, and heat dissipation, although food intake was similar to that of the wild-type mice and locomotor activity was even reduced. This indicates that the partial resistance to diet-induced obesity was mediated by higher metabolic activity in the ELKO mice. Since neuronal leptin receptor knockout mice show obesity and diabetes, the results suggest that endothelial leptin signaling shows opposite effects from that of neuronal leptin signaling, with a facilitatory role in diet-induced obesity.  相似文献   

4.
The prevalence of obesity increases with age in humans and in rodents. Age‐related obesity is characterized by leptin resistance and associated with heightened risk of metabolic disorders. However, the effect of leptin resistance per se has been difficult to disentangle from other effects of aging. Here we demonstrate that celastrol, a natural phytochemical that was previously shown to act as a leptin sensitizer, induces weight loss in aged animals, but not in young controls. Celastrol reduces food intake and lowers fasting glucose without affecting energy expenditure. Unexpectedly, administration of celastrol just before the dark period disrupted circadian rhythms of sleep and activity. This regimen was also associated with loss of lean mass an outcome that would not be desirable in elderly patients. Adjusting the timing of celastrol administration by 12 hr, to the beginning of the light period, avoided interference with circadian rhythms while retaining the reductions in body weight and adiposity. Thus, targeting leptin signaling is an effective strategy to ameliorate age‐associated weight gain, and can profoundly impact circadian rhythms.  相似文献   

5.
Hyperprolactinemia might be related to weight gain, metabolic syndrome (MS), and insulin resistance (IR). Treatment with dopamine agonist (DA) has been shown to reduce body weight and improve metabolic parameters. The objectives of this study were to determine the prevalence of obesity, overweight, MS, and IR in patients with prolactinoma before and after therapy with DA and to evaluate the relation between prolactin (PRL), body weight, fat distribution, leptin levels, IR, and lipid profile before treatment. In addition, we investigated the correlation of the reduction in PRL levels with weight loss and metabolic profile improvement. Twenty‐two patients with prolactinoma completed 6 months of treatment with DA. These patients were submitted to clinical (BMI, waist circumference, blood pressure (BP)), laboratory evaluation (leptin, glucose, low‐density lipoprotein (LDL)‐cholesterol, and triglyceride (TG) levels) and abdominal computed tomography (CT) before and after treatment. The statistical analyses were done by nonparametric tests. At the beginning of the study, the prevalence of obesity, overweight, MS, and IR was 45, 27, 27, and 18%, respectively. After 6 months of treatment with DA, PRL levels normalized, but no significant difference in BMI was observed. However, there was a significant decrease on homeostasis model assessment of insulin resistance (HOMAIR) index, glucose, LDL‐cholesterol, and TG levels. This study suggests a possible involvement of prolactinoma on the prevalence of obesity. We should consider that DA may be effective on improving metabolic parameters, and we speculate that a period longer than 6 months of treatment is necessary to conclude whether this drug can interfere in the body weight of patients with prolactinoma.  相似文献   

6.
We investigated the effects of different weight loss protocols on leptin levels in obese females with the aim of addressing the leptin resistance which has been found to be an aggravating factor in obesity. Twenty-four obese females enrolled to one of three 12-week weight loss protocols: orlistat-induced weight loss (OWL, n=8), exercise-induced weight loss (EWL, n=8) and orlistat plus exercise-induced weight loss (OEWL, n=8). Serum leptin levels were measured in duplicate by radioimmunoassay. There were significant reductions (P<0.01) in body weight and fat mass after the 12 week period in all groups: -11.4+/-0.5 kg and -9.8+/-0.5 kg (OEWL), -8.3+/-0.8 kg and -5.7+/-0.9 kg (OWL), -8.9+/-1.2 kg and -7.4+/-1.2 kg (EWL), respectively. Serum leptin levels were also decreased markedly in all groups: -59.2 % (OEWL1), -37.8 % (OWL) and -48.6 % (EWL) (P<0.01 all). In addition, there were marked decreases in leptin levels for each kilogram of fat mass after the 12 week period: -48.2+/-7.2 % (OEWL), -27.8+/-4.8 % (OWL) and -39.3+/-4.3 % (EWL) (P<0.01 all). Decreases in serum leptin levels expressed per kilogram of fat mass were significantly higher in the OEWL group compared to the OWL group (P=0.03). Consequently, an exercise training program in adjunct to pharmacotherapy provides higher weight reduction and fat mass loss in obesity treatment. It also seems to have further beneficial effects on leptin resistance, as indicated by decreases in leptin levels expressed per kilogram of fat mass.  相似文献   

7.
Boghossian S  Lecklin A  Torto R  Kalra PS  Kalra SP 《Peptides》2005,26(8):1512-1519
Unexpended energy is stored as fat in the body and increased rate of fat accretion culminates in obesity. Obesity increases the risks of many diseases several folds and shortens life span. A progressive deficit in the central feedback effects of leptin, a peptide produced by fat cells and hypothalamus, results in increased weight gain and obesity. This article summarizes our experimental findings to show that a stable increase in leptin availability in the hypothalamus alone with the aid of leptin gene therapy suppresses fat accretion and metabolic hormones for nearly the lifetime of laboratory rodents. Consequently, central leptin gene therapy is a novel modality that offers a viable therapeutic option to reduce fat depots and attendant metabolic sequelae implicated in obesity-related illnesses.  相似文献   

8.
Zhang Y  Scarpace PJ 《Peptides》2006,27(2):350-364
We identified that leptin resistance in aged-obese rats has both peripheral and central components. The central resistance is characterized by diminished hypothalamic leptin receptors and impaired leptin signal transduction. We developed a new model of leptin-induced leptin resistance in which application of the central leptin gene delivery produces unabated hypothalamic leptin over-expression. The chronic central elevation of leptin precipitates leptin resistance in young animals devoid of obesity and exacerbates it in mature or aged animals with obesity. Despite leptin resistance, our aged obese, DIO, and leptin-induced leptin resistant rats were fully responsive to central pharmacological melanocortin activation. We propose that the central leptin resistance resides between leptin receptor and melanocortin receptor activation. Our central POMC gene therapy overcame leptin resistance, producing weight and fat loss and improved insulin sensitivity in obese Zucker and aged rats. This success highlights the central melanocortin system as a useful drug target for combating obesity.  相似文献   

9.

Background

Leptin, a cytokine-like protein, plays an important role in the regulation of body weight through inhibition of food intake and stimulation of energy expenditure. Leptin circulates in blood and acts on the brain, which sends downstream signals to regulate body weight. Leptin therapy has been successful in treating leptin deficient obese patients. However, high levels of leptin have been observed in more common forms of obesity indicating a state of leptin resistance which limits the application of leptin in the treatment of obesity. If the central effect of leptin could be by-passed and genes which respond to leptin treatment could be regulated directly, new therapeutic targets for the treatment of obesity may be possible. The purpose of this study was to identify genes and subsequent pathways correlated with leptin-mediated weight loss.

Methodology/Principal Findings

We utilized microarray technology to compare hepatic gene expression changes after two types of leptin administration: one involving a direct stimulatory effect when administered peripherally (subcutaneous: SQ) and another that is indirect, involving a hypothalamic relay that suppresses food intake when leptin is administered centrally (intracerebroventricular: ICV). We identified 214 genes that correlate with leptin mediated weight loss. Several biological processes such as mitochondrial metabolic pathways, lipid metabolic and catabolic processes, lipid biosynthetic processes, carboxylic acid metabolic processes, iron ion binding and glutathione S-transferases were downregulated after leptin administration. In contrast, genes involved in the immune system inflammatory response and lysosomal activity were found to be upregulated. Among the cellular compartments mitochondrion (32 genes), endoplasmic reticulum (22 genes) and vacuole (8 genes) were significantly over represented.

Conclusions/Significance

In this study we have identified key molecular pathways and downstream genes which respond to leptin treatment and are involved in leptin-mediated weight loss. Many of these genes have previously been shown to be associated with obesity; however, we have also identified a number of other novel target genes. Further investigation will be required to assess the possible use of these genes and their associated protein products as therapeutic targets for the treatment of obesity.  相似文献   

10.
Strategies to reduce obesity have become public health priorities as the prevalence of obesity has risen in the United States and around the world. While the anti-inflammatory and hypotriglyceridemic properties of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are well known, their antiobesity effects and efficacy against metabolic syndrome, especially in humans, are still under debate. In animal models, evidence consistently suggests a role for n-3 PUFAs in reducing fat mass, particularly in the retroperitoneal and epididymal regions. In humans, however, published research suggests that though n-3 PUFAs may not aid weight loss, they may attenuate further weight gain and could be useful in the diet or as a supplement to help maintain weight loss. Proposed mechanisms by which n-3 PUFAs may work to improve body composition and counteract obesity-related metabolic changes include modulating lipid metabolism; regulating adipokines, such as adiponectin and leptin; alleviating adipose tissue inflammation; promoting adipogenesis and altering epigenetic mechanisms.  相似文献   

11.
Leptin has emerged over the past decade as a key hormone not only in energy balance regulation but also in neuroendocrine and inflammatory processes. The aim of the present study was to evaluate whether hyperleptinemia deregulates neuropeptides during weight loss. A total of 86 post-pubertal obese adolescents (with or without hyperleptinemia) participated in one year of interdisciplinary weight loss therapy (clinical, nutritional, psychological and exercise-related). Adipokine and neuropeptide concentrations were measured by ELISA, visceral fat was measured by ultrasound and body composition was measured by pletismography. The hyperleptinemic patients presented a lower alpha-MSH concentration and higher NPY/AgRP ratio while the adiponectin/leptin (A/L) ratio was lower compared with the non-hyperleptinemic group. After therapy, significant improvements in BM, BMI, body fat mass, visceral and subcutaneous fat, HOMA-IR, QUICKI, total cholesterol and triglycerides were observed in both groups. Indeed, we observed significant increases in adiponectin and A/L as well as reductions in leptin and NPY/AgRP ratio in the hyperleptinemic group. In the stepwise multiple linear regression analysis with leptin concentration as the dependent variable, α-MSH and body fat mass (%) were the independent predictors to explain leptin concentration. For the entire group, we found positive correlations between leptinemia and BMI and body fat mass (%) as well as a negative correlation with free fat mass (%) and alpha-MSH. Finally, we verified negative correlations between adiponectin/leptin ratio with total cholesterol and LDL-c, only in hyperleptinemic patients. In conclusion, the hyperleptinemia in obese adolescents deregulates neuropeptides during weight loss.  相似文献   

12.
Obesity is an important public health problem worldwide and is a major risk factor for a number of chronic diseases such as type II diabetes, adverse cardiovascular events and metabolic syndrome-related features. Different treatments have been applied to tackle body fat accumulation and its associated clinical manifestations. Often, relevant weight loss is achieved during the first 6 months under different dietary treatments. From this point, a plateau is reached, and a gradual recovery of the lost weight may occur. Therefore, new research approaches are being investigated to assure weight maintenance. Pioneering investigations have reported that oxygen variations in organic systems may produce changes in body composition. Possible applications of intermittent hypoxia to promote health and in various pathophysiological states have been reported. The hypoxic stimulus in addition to diet and exercise can be an interesting approach to lose weight, by inducing higher basal noradrenalin levels and other metabolic changes whose mechanisms are still unclear. Indeed, hypoxic situations increase the diameter of arterioles, produce peripheral vasodilatation and decrease arterial blood pressure. Furthermore, hypoxic training increases the activity of glycolytic enzymes, enhancing the number of mitochondria and glucose transporter GLUT-4 levels as well as improving insulin sensitivity. Moreover, hypoxia increases blood serotonin and decreases leptin levels while appetite is suppressed. These observations allow consideration of the hypothesis that intermittent hypoxia induces fat loss and may ameliorate cardiovascular health, which might be of interest for the treatment of obesity. This new strategy may be useful and practical for clinical applications in obese patients.  相似文献   

13.
随着代谢综合症在世界范围内的广为流行,已经引起人们的高度重视.代谢综合征以肥胖和代谢异常为特征,胰岛素抵抗为主要的病理机制.瘦素主要来源于脂肪组织,是调节体内脂肪储量和维持能量平衡的一种内分泌激素.瘦素缺乏和瘦素抵抗不仅可以直接引起胰岛素抵抗,而且可以通过导致肥胖继而参与胰岛素抵抗的发生,最终引起代谢综合征.瘦素作为一种新的代谢综合征致病因子,参与代谢综合征的发生发展,故调节瘦素水平为临床治疗代谢综合症提供了新的思路和方法.本文综述了瘦素水平与代谢综合症的关系,以及调节瘦素水平治疗代谢综合征的方法.  相似文献   

14.
The glucose-fatty acid cycle as proposed four decades ago by Randle suggests that insulin resistance develops in consequence of alterations of the metabolic pressure of lipids. The more recently published 'hexosamine pathway theory' and the 'malonyl-CoA hypothesis' depict insulin resistance as a consequence of an imbalance between utilization of lipids and carbohydrates. The latter is finely tuned by entry of fatty acids into the mitochondria and/or by entry of glucose to the hexosamine pathway. A significant body of evidence has also been accumulated which points to the complex effects of leptin, an adipocyte-derived signal of lipid stores, on the storage and metabolism of fats and carbohydrates. These are mediated either directly, through actions on specific tissues, or indirectly, via CNS, endocrine and neural mechanisms. The available literature also provides good evidence that leptin orchestrates the metabolic changes in a number of organs and tissues, and alters nutrient fluxes to favor energy expenditure over energy storage. In this article, the proposed lipopenic effects of leptin as studied in various animal models of diet-induced insulin resistance, and possible regulations of leptin production and action by marine fish oil feeding are reviewed.  相似文献   

15.
To date the best defined function of prolactin (PRL) is its action on the ovary and mammary gland, although it has also been shown to have an effect on lipid metabolism. Using mice engineered to express only the long form of the prolactin receptor (PRL-RL), we demonstrate that PRL acting through PRL-RL alone causes severe adipose accumulation in visceral fat of males at 6 months of age. The increase in visceral fat accumulation is attributed to loss of adipose-derived leptin, which results in diminished lipolysis. The reduction in leptin also corresponds to decreased activation of AMP-activated protein kinase (AMPK), which further results in diminished fatty acid oxidation and increased fatty acid synthesis. Interestingly, the blunted AMPK response was only observed in adipose tissue and not in liver suggesting that this PRL mediated effect is tissue specific. A glucose tolerance study inferred that PRL-RL mice may suffer from insulin resistance or a reduction in insulin production that is not due to aberrant expression of glucose transporter 4 (Glut4). Collectively, our findings demonstrate that PRL signaling through the long form receptor causes reduced fatty acid oxidation, increased lipid storage, glucose intolerance, and obesity. These findings are of great importance towards understanding the etiology of obesity associated with hyperprolactinemia in humans as well as the role of PRL as a metabolic regulator in adipose tissue.  相似文献   

16.
Weight loss in obese humans produces a relative leptin deficiency, which is postulated to activate potent orexigenic and energy conservation mechanisms to restrict weight loss and promote weight regain. Here we determined whether leptin replacement alone or with GLP-1 receptor agonist exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced diet-induced obese (DIO) rats. Forty percent restriction in daily intake of a high-fat diet in DIO rats for 4 wk reduced body weight by 12%, body fat by 29%, and plasma leptin by 67% and normalized leptin sensitivity. When food restriction ended, body weight, body fat, and plasma leptin increased rapidly. Daily administration of leptin [3-h intraperitoneal (ip) infusions (4 nmol·kg(-1)·h(-1))] at onset and end of dark period for 3 wk did not attenuate hyperphagia and weight regain, nor did it affect mean daily meal sizes or meal numbers. Exendin-4 (50 pmol·kg(-1)·h(-1)) infusions during the same intervals prevented postrestriction hyperphagia and weight regain by normalizing meal size. Coadministration of leptin and exendin-4 did not reduce body weight more than exendin-4 alone. Instead, leptin began to attenuate the inhibitory effects of exendin-4 on food intake, meal size, and weight regain by the end of the second week of administration. Plasma leptin in rats receiving leptin was sevenfold greater than in rats receiving vehicle and 17-fold greater than in rats receiving exendin-4. Together, these results do not support the hypothesis that leptin replacement alone or with exendin-4 attenuates weight regain or promotes greater weight loss in weight-reduced DIO rats.  相似文献   

17.
大部分肥胖患者体内出现瘦素抵抗,表现为血清瘦素水平异常升高,但机体对瘦素不敏感或无反应,使瘦素抑制食欲、增加能量消耗和降低血糖等功能不能有效发挥.减轻瘦素抵抗被认为是治疗肥胖及肥胖相关疾病的有效途径.运动减轻肥胖、改善糖脂代谢和增强胰岛素敏感性的作用与运动降低瘦素水平、改善瘦素抵抗密切相关.本文在概述瘦素实现生理功能的机制、肥胖症的中枢及外周瘦素抵抗的基础上,主要综述近年来运动减轻肥胖症瘦素抵抗机制的研究进展,包括减轻高瘦素血症、改善中枢和外周瘦素抵抗,以期为运动防治肥胖机制的研究提供新视角.  相似文献   

18.
Obesity-related leptin resistance manifests in loss of?leptin's ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB(1) receptor (CB(1)R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB(1)R inverse agonist JD5037 is equieffective with its brain-penetrant parent compound in reducing appetite, body weight, hepatic steatosis, and insulin resistance, even though it does not occupy central CB(1)R or induce related behaviors. Appetite and weight reduction by JD5037 are mediated by resensitizing DIO mice to endogenous leptin through reversing the hyperleptinemia by decreasing leptin expression and secretion by adipocytes and increasing leptin clearance via the?kidney. Thus, inverse agonism at peripheral CB(1)R not only improves cardiometabolic risk in obesity but has antiobesity effects by reversing leptin resistance.  相似文献   

19.
Restriction of a high-fat diet (HFD) and a change to a low-fat diet (LFD) are two interventions that were shown to promote weight loss and improve parameters of metabolic health in obesity. Examination of the biochemical and molecular responses of white adipose tissue (WAT) to these interventions has not been performed so far. Here, male C57BL/6JOlaHsd mice, harboring an intact nicotinamide nucleotide transhydrogenase gene, were fed a purified 40 energy% HFD for 14 weeks to induce obesity. Afterward, mice were divided into three dietary groups: HFD (maintained on HFD), LFD (changed to LFD with identical ingredients), and HFD-CR (restricted to 70 % of the HFD). The effects of the interventions were examined after 5 weeks. Beneficial effects were seen for both HFD-CR and LFD (compared to HFD) regarding physiological parameters (body weight and fat mass) and metabolic parameters, including circulating insulin and leptin levels. Macrophage infiltration in WAT was reduced by both interventions, although more effectively by HFD-CR. Strikingly, molecular parameters in WAT differed between HFD-CR and LFD, with increased activation of mitochondrial carbohydrate and fat metabolism in HFD-CR mice. Our results confirm that restriction of the amount of dietary intake and reduction in the dietary energy content are both effective in inducing weight loss. The larger decrease in WAT inflammation and increase in mitochondrial carbohydrate metabolism may be due to a larger degree of energy restriction in HFD-CR, but could also be due to superior effectiveness of dietary restriction in weight loss strategies.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0391-9) contains supplementary material, which is available to authorized users.  相似文献   

20.
The weight-reducing effects of leptin are predominantly mediated through the hypothalamus in the brain. Gene therapy strategies designed for weight control have so far tested the short-term effect of peripherally delivered viral vectors encoding the leptin gene. In order to circumvent the multiple peripheral effects of hyperleptinemia and to overcome the age-related development of leptin resistance due to multiple factors, including defective leptin transport across the blood brain barrier, we determined whether delivery of viral vectors directly into the brain is a viable therapeutic strategy for long-term weight control in normal wild-type rats. A recombinant adeno-associated virus (rAAV) vector encoding rat leptin (Ob) cDNA was generated (rAAV-betaOb). When administered once intracerebroventricularly (i.c.v.), rAAV-betaOb suppressed the normal time-related weight gain for extended periods of time in adult Sprague-Dawley rats. The vector expression was confirmed by immunocytochemical localization of GFP and RT-PCR analysis of leptin in the hypothalamus. This sustained restraint on weight gain was not due to shifts in caloric consumption because food-intake was similar in rAAV-betaOb-treated and rAAV-GFP-treated control rats throughout the experiment. Weight gain suppression, first apparent after 2 weeks, was a result of reduced white fat depots and was accompanied by drastically reduced serum leptin and insulin concentrations in conjunction with normoglycemia. Additionally, there was a marked increase in uncoupling protein-1 (UCP1) mRNA expression in brown adipose tissue, thereby indicating increased energy expenditure through thermogenesis. Seemingly, a selective enhancement in energy expenditure following central delivery of the leptin gene is a viable therapeutic strategy to control the age-related weight gain and provide protection from the accompanying multiple peripheral effects of hyperleptinemia and hyperinsulinemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号