首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Human apolipoprotein (apo) C-II is one of several lipid-binding proteins that self-assemble into fibrils and accumulate in disease-related amyloid deposits. A general characteristic of these amyloid deposits is the presence of lipids, known to modulate individual steps in amyloid fibril formation. ApoC-II fibril formation is activated by submicellar phospholipids but inhibited by micellar lipids. We examined the mechanism for the activation by submicellar lipids using the fluorescently labeled, short-chain phospholipid 1-dodecyl-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-2-hydroxyglycero-3-phosphocholine (NBD-lyso-12-PC). Addition of submicellar NBD-lyso-12-PC increased the rate of fibril formation by apoC-II approximately 2-fold. Stopped flow kinetic analysis using fluorescence detection and low, non-fibril-forming concentrations of apoC-II indicated NBD-lyso-12-PC binds rapidly, on the millisecond time scale, followed by the slower formation of discrete apoC-II tetramers. Sedimentation velocity analysis showed NBD-lyso-12-PC binds to both apoC-II monomers and tetramers at approximately five sites per monomer with an average dissociation constant of approximately 10 μM. Mature apoC-II fibrils formed in the presence of NBD-lyso-12-PC were devoid of lipid, indicating a purely catalytic role for submicellar lipids in the activation of apoC-II fibril formation. These studies demonstrate the catalytic potential of small amphiphilic molecules in controlling protein folding and fibril assembly pathways.  相似文献   

2.
The apolipoprotein family is a set of highly conserved proteins characterized by the presence of amphipathic α-helical sequences that mediate lipid binding. Paradoxically, this family of proteins is also prominent among the proteins known to form amyloid fibrils, characterized by extensive cross-β structure. Several apolipoproteins including apolipoprotein (apo) A-I, apoA-II and apoC-II accumulate in amyloid deposits of atherosclerotic lesions. This review illustrates the role of lipid-apolipoprotein interactions in apolipoprotein folding and aggregation with a specific focus on human apoC-II, a well-studied member of the family. In the presence of high concentrations of micellar lipid mimetics apoC-II adopts a stable and predominantly α-helical structure, similar to other members of the family and presumed to be the structure of apoC-II in circulating plasma lipoproteins. In contrast, lipid-free apoC-II aggregates to form long amyloid fibrils with a twisted ribbon-like morphology. Detailed structural analyses identify a letter G-like conformation as the basic building block within these fibrils. Phospholipids at submicellar concentrations accelerate apoC-II fibril formation by promoting the formation of a discrete tetrameric intermediate. Conversely, several small molecule lipid-mimetics inhibit apoC-II fibril formation at submicellar concentrations, inducing well-defined dimers unable to further aggregate. Finally, low concentrations of phospholipid micelles and bilayers induce the slow formation of amyloid fibrils with distinct rod-like fibril morphology. These studies highlight the diversity of lipid effects on apolipoprotein amyloid formation and reveal a conformational adaptability that could underlie the widespread occurrence of apolipoproteins in amyloid deposits and atheroma.  相似文献   

3.
Amyloid fibrils and their oligomeric intermediates accumulate in several age-related diseases where their presence is considered to play an active role in disease progression. A common characteristic of amyloid fibril formation is an initial lag phase indicative of a nucleation-elongation mechanism for fibril assembly. We have investigated fibril formation by human apolipoprotein (apo) C-II. ApoC-II readily forms amyloid fibrils in a lipid-dependent manner via an initial nucleation step followed by fibril elongation, breaking, and joining. We used fluorescence techniques and stopped-flow analysis to identify the individual kinetic steps involved in the activation of apoC-II fibril formation by the short-chain phospholipid dihexanoyl phosphatidylcholine (DHPC). Submicellar DHPC activates fibril formation by promoting the rapid formation of a tetrameric species followed by a slow isomerisation that precedes monomer addition and fibril growth. Global fitting of the concentration dependence of apoC-II fibril formation showed that DHPC increased the overall tetramerisation constant from 7.5 × 10− 13 to 1.2 × 10− 6 μM− 3 without significantly affecting the rate of fibril elongation, breaking, or joining. Studies on the effect of DHPC on the free pool of apoC-II monomer and on fibril formation by cross-linked apoC-II dimers further demonstrate that DHPC affects nucleation but not elongation. These studies demonstrate the capacity of small lipid compounds to selectively target individual steps in the amyloid fibril forming pathway.  相似文献   

4.
The misfolding and self-assembly of proteins into amyloid fibrils, which occur in several debilitating and age-related diseases, are affected by common components of amyloid deposits, notably lipids and lipid complexes. Previously, the effects of phospholipids on amyloid fibril formation by apolipoprotein (apo) C-II have been examined, where low concentrations of micellar phospholipids and lipid bilayers induce a new, straight rod-like morphology for apoC-II fibrils. This fibril appearance is distinct from the twisted-ribbon morphology observed when apoC-II fibrils are formed in the absence of lipids. We used total internal reflection fluorescence microscopy (TIRFM) to visualize the described polymorphism of apoC-II amyloid fibrils. The spontaneous assembly of apoC-II into either twisted-ribbon fibrils in the absence of lipids or into fibrils of straight rod-like morphology when lipids are present was captured by TIRFM. The latter was found to be better suited for visualization using TIRFM. The difference between seeding of apoC-II straight fibrils on microscopic quartz slide and in test tube suggested a role for the effects of incubation surface on fibril formation. Seed-dependent growth of apoC-II straight fibrils was probed further by using a dual-labelling construct, giving insights into the straight fibril growth pattern.  相似文献   

5.
A common feature of many of the most important and prominent amyloid-forming proteins is their ability to bind lipids and lipid complexes. Lipids are ubiquitous components of disease-associated amyloid plaques and deposits in humans, yet the specific roles of lipid in the process of amyloid fibril formation are poorly understood. This study investigated the effect of phospholipids on amyloid fibril formation by human apolipoprotein (apo) C-II using phosphatidylcholine derivatives comprising acyl chains of up to 14 carbon atoms. Submicellar concentrations of short-chain phospholipids increase the rate of apoC-II fibril formation in an acyl-chain-length- and concentration-dependent fashion, while high micellar concentrations of phospholipids completely inhibited amyloid formation. At lower concentrations of soluble phospholipid complexes, fibril formation by apoC-II was only partially inhibited, and under these conditions, aggregation followed a two-phase process. Electron microscopy showed that the fibrils resulting from the second phase of aggregation were straight, cablelike, and about 13 nm wide, in contrast to the homogeneous twisted-ribbon morphology of apoC-II fibrils formed under lipid-free conditions. Seeding experiments showed that this alternative fibril structure could be templated both in the presence and in the absence of lipid complex, suggesting that the two morphologies result from distinct assembly pathways. Circular dichroism spectroscopy studies indicated that the secondary structural conformation within the straight-type and ribbon-type fibrils were distinct, further suggesting divergent assembly pathways. These studies show that phospholipid complexes can change the structural architecture of mature fibrils and generate new fibril morphologies with the potential to alter the in vivo behaviour of amyloid. Such lipid interactions may play a role in defining the structural features of fibrils formed by diverse amyloidogenic proteins.  相似文献   

6.
7.
Lipid-free human apolipoprotein C-II (apoC-II) forms amyloid fibrils with characteristic beta-structure. This conformation is distinct from the alpha-helical fold of lipid-bound apoC-II. We have investigated the effect of the short-chain phospholipid, dihexanoylphosphatidylcholine (DHPC) on amyloid formation by apoC-II. The alpha-helical content of apoC-II increases in the presence of micellar DHPC (16 mM) and amyloid formation is inhibited. However, at sub-micellar DHPC concentrations (below 8 mM) amyloid formation is accelerated 6 fold. These results suggest that individual phospholipid molecules in vivo may exert significant effects on amyloid folding pathways.  相似文献   

8.
The misfolding and aggregation of proteins to form amyloid fibrils are associated with a number of debilitating, age-related diseases. Many of the proteins that form amyloid in vivo are lipid-binding proteins, accounting for the significant impact of lipids on the rate of formation and morphology of amyloid fibrils. To systematically investigate the effect of lipid-like compounds, we screened a range of amphipathic lipids and detergents for their effect on amyloid fibril formation by human apolipoprotein (apo) C-II. The initial screen, conducted using a set of amphiphiles at half critical micelle concentration, identified several activators and inhibitors that were selected for further analysis. Sedimentation analysis and circular dichroism studies of apoC-II at low, non-fibril-forming concentrations (0.05 mg/ml) revealed that all of the inhibitors induced the formation of apoC-II dimers enriched in α-helical content while the activators promoted the formation of stable apoC-II tetramers with increased β-structure. Kinetic analysis identified modulators of apoC-II fibril formation that were effective at concentrations as low as 10 μM, corresponding to a modulator-to-apoC-II ratio of approximately 1:10. Delayed addition of the test compounds after fibril formation had commenced allowed the effects of selected amphiphiles on fibril elongation to be determined separately from their effects on fibril nucleation. The results indicated that specific amphiphiles induce structural changes in apoC-II that cause separate and independent effects on fibril nucleation and elongation. Low-molecular-weight amphipathic lipids and detergents may serve as useful, stage-specific modulators of protein self-assembly and fibril formation in disease-prevention strategies.  相似文献   

9.
Under lipid-free conditions, human apolipoprotein C-II (apoC-II) exists in an unfolded conformation that over several days forms amyloid ribbons. We examined the influence of the molecular chaperone, alpha-crystallin, on amyloid formation by apoC-II. Time-dependent changes in apoC-II turbidity (at 0.3 mg/ml) were suppressed potently by substoichiometric subunit concentrations of alpha-crystallin (1-10 microg/ml). alpha-Crystallin also inhibits time-dependent changes in the CD spectra, thioflavin T binding, and sedimentation coefficient of apoC-II. This contrasts with stoichiometric concentrations of alpha-crystallin required to suppress the amorphous aggregation of stressed proteins such as reduced alpha-lactalbumin. Two pieces of evidence suggest that alpha-crystallin directly interacts with amyloidogenic intermediates. First, sedimentation equilibrium and velocity experiments exclude high affinity interactions between alpha-crystallin and unstructured monomeric apoC-II. Second, the addition of alpha-crystallin does not lead to the accumulation of intermediate sized apoC-II species between monomer and large aggregates as indicated by gel filtration and sedimentation velocity experiments, suggesting that alpha-crystallin does not inhibit the relatively rapid fibril elongation upon nucleation. We propose that alpha-crystallin interacts stoichiometrically with partly structured amyloidogenic precursors, inhibiting amyloid formation at nucleation rather than the elongation phase. In doing so, alpha-crystallin forms transient complexes with apoC-II, in contrast to its chaperone behavior with stressed proteins.  相似文献   

10.
The misfolding and self-assembly of proteins into amyloid fibrils that occur in several debilitating diseases are affected by a variety of environmental factors, including mechanical factors associated with shear flow. We examined the effects of shear flow on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Shear fields (150, 300, and 500 s(-1)) accelerated the rate of apoC-II fibril formation (1 mg/mL) approximately 5-10-fold. Fibrils produced at shear rates of 150 and 300 s(-1) were similar to the twisted ribbon fibrils formed in the absence of shear, while at 500 s(-1), tangled ropelike structures were observed. The mechanism of the shear-induced acceleration of amyloid fibril formation was investigated at low apoC-II concentrations (50 μg/mL) where fibril formation does not occur. Circular dichroism and tryptophan fluorescence indicated that shear induced an irreversible change in apoC-II secondary structure. Fluorescence resonance energy transfer experiments using the single tryptophan residue in apoC-II as the donor and covalently attached acceptors showed that shear flow increased the distance between the donor and acceptor molecules. Shear-induced higher-order oligomeric species were identified by sedimentation velocity experiments using fluorescence detection, while fibril seeding experiments showed that species formed during shear flow are on the fibril formation pathway. These studies suggest that physiological shear flow conditions and conditions experienced during protein manufacturing can exert significant effects on protein conformation, leading to protein misfolding, aggregation, and amyloid fibril formation.  相似文献   

11.
The effect of the extracellular chaperone, clusterin, on amyloid fibril formation by lipid-free human apolipoprotein C-II (apoC-II) was investigated. Sub-stoichiometric levels of clusterin, derived from either plasma or semen, potently inhibit amyloid formation by apoC-II. Inhibition is dependent on apoC-II concentration, with more effective inhibition by clusterin observed at lower concentrations of apoC-II. The average sedimentation coefficient of apoC-II fibrils formed from apoC-II (0.3 mg.mL-1) is reduced by coincubation with clusterin (10 microg x mL(-1)). In contrast, addition of clusterin (0.1 mg x mL(-1)) to preformed apoC-II amyloid fibrils (0.3 mg x mL(-1)) does not affect the size distribution after 2 days. This sedimentation velocity data suggests that clusterin inhibits fibril growth but does not promote fibril dissociation. Electron micrographs indicate similar morphologies for amyloid fibrils formed in the presence or absence of clusterin. The substoichiometric nature of the inhibition suggests that clusterin interacts with transient amyloid nuclei leading to dissociation of the monomeric subunits. We propose a general role for clusterin in suppressing the growth of extracellular amyloid.  相似文献   

12.
Apolipoprotein amyloid deposits and lipid oxidation products are colocalized in human atherosclerotic tissue. In this study we show that the primary ozonolysis product of cholesterol, 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (KA), rapidly promotes human apolipoprotein (apo) C-II amyloid fibril formation in vitro. Previous studies show that hydrophobic aldehydes, including KA, modify proteins by the formation of a Schiff base with the lysine epsilon-amino group or N-terminal amino group. High-performance liquid chromatography, mass spectrometry, and proteolysis of KA-modified apoC-II revealed that KA randomly modified six different lysine residues, with primarily one KA attached per apoC-II molecule. Competition experiments showed that an aldehyde scavenging compound partially inhibited the ability of KA to hasten apoC-II fibril formation. Conversely, the acid derivative of KA, lacking the ability to form a Schiff base, accelerated apoC-II fibril formation, albeit to a lesser extent, suggesting that amyloidogenesis triggered by KA involves both covalent and noncovalent mechanisms. The viability of a noncovalent mechanism mediated by KA has been observed previously with alpha-synuclein aggregation, implicated in Parkinson's disease. Electron microscopy demonstrated that fibrils formed in the presence of KA had a similar morphology to native fibrils; however, the isolated KA-apoC-II covalent adducts in the absence of unmodified apoC-II formed fibrillar structures with altered ropelike morphologies. KA-mediated fibril formation by apoC-II was inhibited by the addition of the amine-containing compound hydralazine and the lipid-binding protein apoA-I. These in vitro studies suggest that the oxidized small molecule pool could trigger or hasten the aggregation of apoC-II to form amyloid deposits.  相似文献   

13.
The main pathogenic process underlying dialysis-related amyloidosis is the accumulation of β-2-microglobulin (β2m) as amyloid fibrils in the musculoskeletal system, and some evidence suggests that Cu(II) may play a role in β2m amyloid formation. Cu(II)-induced β2m fibril formation is preceded by the formation of discrete, oligomeric intermediates, including dimers, tetramers, and hexamers. In this work, we use selective covalent labeling reactions combined with mass spectrometry to investigate the amino acids responsible for mediating tetramer formation in wild-type β2m. By comparing the labeling patterns of the monomer, dimer, and tetramer, we find evidence that the tetramer interface is formed by the interaction of D strands from one dimer unit and G strands from another dimer unit. These covalent labeling data along with molecular dynamics calculations allow the construction of a tetramer model that indicates how the protein might proceed to form even higher-order oligomers.  相似文献   

14.
Binger KJ  Griffin MD  Howlett GJ 《Biochemistry》2008,47(38):10208-10217
Methionine residues are linked to the pathogenicity of several amyloid diseases; however, the mechanism of this relationship is largely unknown. These diseases are characterized, in vivo, by the accumulation of insoluble proteinaceous plaques, of which the major constituents are amyloid fibrils. In vitro, methionine oxidation has been shown to modulate fibril assembly in several well-characterized amyloid systems. Human apolipoprotein (apo) C-II contains two methionine residues (Met-9 and Met-60) and readily self-assembles in vitro to form homogeneous amyloid fibrils, thus providing a convenient system to examine the effect of methionine oxidation on amyloid fibril formation and stability. Upon oxidation of the methionine residues of apoC-II with hydrogen peroxide, fibril formation was inhibited. Oxidized apoC-II molecules did not inhibit native apoC-II assembly, indicating that the oxidized molecules had a reduced ability to interact with the growing fibrils. Single Met-Val substitutions were performed and showed that oxidation of Met-60 had a more significant inhibitory effect than oxidation of Met-9. In addition, Met-Gln substitutions designed to mimic the effect of oxidation on side chain hydrophilicity showed that a change in hydrophobicity at position 60 within the core region of the fibril had a potent inhibitory effect. The oxidation of preformed apoC-II fibrils caused their dissociation; however, mutants in which the Met-60 was substituted with a valine were protected from this peroxide-induced dissociation. This work highlights an important role for methionine in the formation of amyloid fibril structure and gives new insight into how oxidation affects the stability of mature fibrils.  相似文献   

15.
Pham CL  Hatters DM  Lawrence LJ  Howlett GJ 《Biochemistry》2002,41(48):14313-14322
We have investigated the effect of disulfide cross-linking on amyloid formation by human apolipoprotein (apo) C-II. Three derivatives of apoC-II were generated by inserting a cysteine residue on either the N-terminus (C(N)-apoC-II), C-terminus (C(C)-apoC-II), or both termini (C(N)C(C)-apoC-II). Under reducing conditions, all derivatives formed amyloid with a fibrous ribbon morphology similar to that of wild-type apoC-II. Under oxidizing conditions, C(N)- and C(N)C(C)-apoC-II formed a highly tangled network of fibrils, suggesting that the addition of an N-terminal cysteine to apoC-II promotes interfibril disulfide cross-links. Fibrils formed by C(C)-apoC-II under oxidizing conditions were closely packed but less tangled than fibrils formed by the C(N) and C(N)C(C) derivatives. The frequency of closed ring structures was more than doubled for C(C)-apoC-II compared to wild-type apoC-II. The kinetics of fibril formation by all cysteine derivatives was markedly enhanced under oxidizing conditions, suggesting that disulfide cross-linking promotes amyloid formation. Substoichiometric levels of preformed C(N)- and C(C)-apoC-II dimers accelerate amyloid formation by wild-type apoC-II. These data suggest that the N- and C-termini of apoC-II are close together in the amyloid fibril such that covalent cross-linking of either the N or C end of apoC-II promotes nucleation and the "seeding" of fibril growth.  相似文献   

16.
Soluble oligomers of prion proteins (PrP), produced during amyloid aggregation, have emerged as the primary neurotoxic species, instead of the fibrillar end-products, in transmissible spongiform encephalopathies. However, whether the membrane is among their direct targets, that mediate the downstream adverse effects, remains a question of debate. Recently, questions arise from the formation of membrane-active oligomeric species generated during the β-aggregation pathway, either in solution, or in lipid environment. In the present study, we characterized membrane interaction of off-pathway oligomers from recombinant prion protein generated along the amyloid aggregation and compared to lipid-induced intermediates produced during lipid-accelerated fibrillation. Using calcein-leakage assay, we show that the soluble prion oligomers are the most potent in producing leakage with negatively charged vesicles. Binding affinities, conformational states, mode of action of the different PrP assemblies were determined by thioflavin T binding-static light scattering experiments on DOPC/DOPS vesicles, as well as by FTIR-ATR spectroscopy and specular neutron reflectivity onto the corresponding supported lipid bilayers. Our results indicate that the off-pathway PrP oligomers interact with lipid membrane via a distinct mechanism, compared to the inserted lipid-induced intermediates. Thus, separate neurotoxic mechanisms could exist following the puzzling intermediates generated in the different cell compartments. These results not only reveal an important regulation of lipid membrane on PrP behavior but may also provide clues for designing stage-specific and prion-targeted therapy.  相似文献   

17.
Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures. The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with the pathogenesis of several human degenerative diseases. A number of plasma apolipoproteins, including apolipoprotein (apo) A-I, apoA-II, apoC-II and apoE are implicated in amyloid formation or influence amyloid formation by other proteins. We review present knowledge of amyloid formation by apolipoproteins in disease, with particular focus on atherosclerosis. Further insights into the molecular mechanisms underlying their amyloidogenic propensity are obtained from in vitro studies which describe factors affecting apolipoprotein amyloid fibril formation and interactions. Additionally, we outline the evidence that amyloid fibril formation by apolipoproteins might play a role in the development and progression of atherosclerosis, and highlight possible molecular mechanisms that could contribute to the pathogenesis of this disease.  相似文献   

18.
Serum amyloid P (SAP) is a common component of human amyloid deposits and has been identified in atherosclerotic lesions. We investigated the extent of the colocalization of SAP with apolipoprotein A-I (apoA-I), apoB, apoC-II, and apoE in human coronary arteries and explored potential roles for SAP in these regions, specifically the effect of SAP on the rate of formation and macrophage recognition of amyloid fibrils composed of apoC-II. Analysis of 42 human arterial sections by immunohistochemistry and double label fluorescence microscopy demonstrated that SAP and apoA-I, apoB, apoC-II, and apoE were increased significantly in atherosclerotic lesions compared with nonatherosclerotic segments. SAP colocalized with all four apolipoproteins to a similar extent, whereas plaque macrophages were found to correlate most strongly with apoC-II and apoB. In vitro studies showed that SAP accelerated the formation of amyloid fibrils by purified apoC-II. Furthermore, SAP strongly inhibited the phagocytosis of apoC-II amyloid fibrils by primary macrophages and macrophage cell lines and blocked the resultant production of reactive oxygen species. The ability of SAP to accelerate apoC-II amyloid fibril formation and inhibit macrophage recognition of apoC-II fibrils suggests that SAP may modulate the inflammatory response to amyloid fibrils in atherosclerosis.  相似文献   

19.
Apolipoprotein (apo) E is a well characterized lipid-binding protein in plasma that also exists as a common nonfibrillar component of both cerebral and systemic amyloid deposits. A genetic link between a common isoform of apoE, apoE4, and the incidence of late onset Alzheimer disease has drawn considerable attention to the potential roles of apoE in amyloid-related disease. We examined the interactions of apoE with amyloid fibrils composed of apoC-II and the amyloid-beta (Abeta) peptide. Aggregates of apoE with Abeta and apoC-II are found in Alzheimer and atherosclerotic plaques, respectively. Sedimentation velocity and fibril size distribution analysis showed that apoE3 and E4 isoforms bind and noncovalently cross-link apoC-II fibrils in a similar manner. This ability to cross-link apoC-II fibrils was abolished by the dissociation of the apoE tetramer to monomers or by thrombin cleavage to yield separate N- and C-terminal domains. Preparative ultracentrifuge binding studies indicated that apoE and the isolated N- and C-terminal domains of apoE bind with submicromolar affinities to both apoC-II and Abeta fibrils. Fluorescence quenching and resonance energy transfer experiments confirmed that both domains of apoE interact with apoC-II fibrils and demonstrated that the binding of the isolated N-terminal domain of apoE to apoC-II or Abeta fibrils is accompanied by a significant conformational change with helix three of the domain moving relative to helix one. We propose a model involving the interaction of apoE with patterns of aligned residues that could explain the general ability of apoE to bind to a diverse range of amyloid fibrils.  相似文献   

20.
Plasma apolipoproteins show alpha-helical structure in the lipid-bound state and limited conformational stability in the absence of lipid. This structural instability of lipid-free apolipoproteins may account for the high propensity of apolipoproteins to aggregate and accumulate in disease-related amyloid deposits. Here, we explore the properties of amyloid fibrils formed by apolipoproteins using human apolipoprotein (apo) C-II as a model system. Hydrogen-deuterium exchange and NMR spectroscopy of apoC-II fibrils revealed core regions between residues 19-37 and 57-74 with reduced amide proton exchange rates compared to monomeric apoC-II. The C-terminal core region was also identified by partial proteolysis of apoC-II amyloid fibrils using endoproteinase GluC and proteinase K. Complete tryptic hydrolysis of apoC-II fibrils followed by centrifugation yielded a single peptide in the pellet fraction identified using mass spectrometry as apoC-II(56-76). Synthetic apoC-II(56-76) readily formed fibrils, albeit with a different morphology and thioflavinT fluorescence yield compared to full-length apoC-II. Studies with smaller peptides narrowed this fibril-forming core to a region within residues 60-70. We postulate that the ability of apoC-II(60-70) to independently form amyloid fibrils drives fibril formation by apoC-II. These specific amyloid-forming regions within apolipoproteins may underlie the propensity of apolipoproteins and their peptide derivatives to accumulate in amyloid deposits in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号