首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The rate of [15N]ammonia (15NH3) uptake or incorporation into bacterial cells was studied, using stirred, 3-liter benchtop digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60 degrees C and at four different loading rates (3, 6, 9, and 12 g of volatile solids per liter of reactor volume per day). The rate of NH3-N incorporation for the period 1 to 5 h after feeding at the four different loading rates was 0.49, 0.83, 1.05, and 1.08 mg/liter per h in the mesophilic digestor and 0.68, 1.07, 1.17, and 1.21 mg/liter per h in the thermophilic digestor. Values were lower 7 to 21 h after feeding in both digestors and were related to the rate of fermentation or CH4 production. In the mesophilic digestors, the rate of bacterial cell production ranged from 3.97 to 8.72 mg of dry cells per liter per h, 1 to 5 h after feeding at the different loading rates. Corresponding values for the thermophilic digestors ranged from 5.46 to 9.77 mg of dry cells per liter per h. Cell yield values ranged from 2.3 to 3.1 mg of dry cells per mol of CH4 produced in the mesophilic and thermophilic digestors at the two lower loading rates. The values were higher (2.8 to 3.4) in the mesophilic digestors at the two higher loading rates because of the accumulation of propionate and a consequent reduction in CH4 production. Low cell yields such as those measured in this study are characteristic of low-specific-growth rates under energy-limited conditions.  相似文献   

2.
The quantitative contribution of fatty acids and CO(2) to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60 degrees C under identical loading conditions (6 g of volatile solids per liter of reactor volume per day, 10-day retention time). In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 muM/min to a peak (49 muM/min) 1 h after feeding and then gradually decreased. Acetate turnover in the mesophilic digestor increased from 15 to 40 muM/min. Propionate turnover ranged from 2 to 5.2 and 1.5 to 4.5 muM/min in the thermophilic and mesophilic digestors, respectively. Butyrate turnover (0.7 to 1.2 muM/min) was similar in both digestors. The proportion of CH(4) produced via the methyl group of acetate varied with time after feeding and ranged from 72 to 75% in the mesophilic digestor and 75 to 86% in the thermophilic digestor. The contribution from CO(2) reduction was 24 to 29% and 19 to 27%, respectively. Propionate and butyrate turnover accounted for 20% of the total CH(4) produced. Acetate synthesis from CO(2) was greatest shortly after feeding and was higher in the thermophilic digestor (0.5 to 2.4 muM/min) than the mesophilic digestor (0.3 to 0.5 muM/min). Counts of fatty acid-degrading bacteria were related to their turnover activity.  相似文献   

3.
The quantitative contribution of fatty acids and CO2 to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60°C under identical loading conditions (6 g of volatile solids per liter of reactor volume per day, 10-day retention time). In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 μM/min to a peak (49 μM/min) 1 h after feeding and then gradually decreased. Acetate turnover in the mesophilic digestor increased from 15 to 40 μM/min. Propionate turnover ranged from 2 to 5.2 and 1.5 to 4.5 μM/min in the thermophilic and mesophilic digestors, respectively. Butyrate turnover (0.7 to 1.2 μM/min) was similar in both digestors. The proportion of CH4 produced via the methyl group of acetate varied with time after feeding and ranged from 72 to 75% in the mesophilic digestor and 75 to 86% in the thermophilic digestor. The contribution from CO2 reduction was 24 to 29% and 19 to 27%, respectively. Propionate and butyrate turnover accounted for 20% of the total CH4 produced. Acetate synthesis from CO2 was greatest shortly after feeding and was higher in the thermophilic digestor (0.5 to 2.4 μM/min) than the mesophilic digestor (0.3 to 0.5 μM/min). Counts of fatty acid-degrading bacteria were related to their turnover activity.  相似文献   

4.
Methanogenesis was studied using stirred, bench-top fermentors of 3-1 working volume fed on a semi-continuous basis with waste obtained from cattle fed a high grain, finishing diet. Digestion was carried out at 40 and 60°C. CH4 production was 11.8, 18.3, 61.9 and 84.5% higher in the thermophilic than the mesophilic digestor at the 3, 6, 9 and 12 g volatile solids (VS) l–1 reactor volume loading rates, respectively. When compared on an energetic basis CH4 production was 7.4, 18.3, 72.9 and 107.3 kJ day higher in the thermophilic than the mesophilic digestor. CH4 production decreased more rapidly with each increase in VS loading rate and decrease in retention time (RT) in the mesophilic than the thermophilic digestor. When expressed as l g–1 VS fed or as kJ kJ–1 fed, the amount of CH4 was 49% less at the highest compared to the lowest loading rate in the mesophilic digestor. In the thermophilic digestor the decrease was only 16%. Propionate accumulated in the mesophilic digestor at the two highest loading rates, reaching concentrations of about 50 mM, but were only about 13 mM in the thermophilic digestor. Isobutyrate, isovalerate plus 2-methylbutyrate, and valerate also accumulated at the higher loading rates.  相似文献   

5.
Thermophilic methane production from cattle waste   总被引:6,自引:0,他引:6  
Methane production from waste of cattle fed a finishing diet was investigated, using four 3-liter-working volume anaerobic digestors at 60 degrees C. At 55 degrees C a start-up culture, in which waste was the only source of bacteria, was generated within 8 days and readily adapted to 60 degrees C, where efficiency of methanogenesis was greater. Increasing the temperature from 60 to 65 degrees C tended to drastically lower efficiency. When feed concentrations of volatile solids (VS, organic matter) were increased in steps of 2% after holding for 1 months at a given concentration, the maximum concentrations for efficient fermentation were 8.2, 10.0, 11.6, and 11.6% for the retention times (RT) of 3, 6, 9, and 12 days, respectively. The VS destructions for these and lower feed concentrations were 31 to 37, 36 to 40, 47 to 49 and 51 to 53% for the 3-, 6-, 9-, and 12-day RT digestors, respectively, and the corresponding methane production rates were about 0.16, 0.18, 0.20, and 0.22 liters/day per g of VS in the feed. Gas contained 52 to 57% methane. At the above RT and feed concentrations, alkalinity rose to 5,000 to 7,700 mg of CaCo3 per liter (pH to 7.5 to 7.8), NH3 plus NH4+ to 64 to 90 mM, and total volatile acids to 850 to 2,050 mg/liter as acetate. The 3-day RT digestor was quite stable up to 8.2% feed VS and at this feed concentration produced methane at the very high rate of 4.5 liters/day per liter of digestor. Increasing the percentage of feed VS beyond those values indicated above resulted in greatly decreased organic matter destruction and methane production, variable decrease in pH, and increased alkalinity, ammonia, and total volatile acid concentrations, with propionate being the first to accumulate in large amounts. In a second experiment with another lot of waste, the results were similar. These studies indicate that loading rates can be much higher than those previously thought useful for maximizing methanogenesis from cattle waste.  相似文献   

6.
Aceticlastic methanogens and other microbial groups were enumerated in a 58 degrees C laboratory-scale (3 liter) anaerobic digestor which was fed air-classified municipal refuse, a lignocellulosic waste (loading rate = 1.8 to 2.7 g of volatile solids per liter per day; retention time = 10 days). Two weeks after start-up, Methanosarcina sp. was present in high numbers (10 to 10 CFU/ml) and autofluorescent Methanosarcina-like clumps were abundant in sludge examined by using epifluorescence microscopy. After about 4 months of digestor operation, numbers of Methanosarcina sp. dropped 2 to 3 orders of magnitude and large numbers (most probable number = 10 to 10/ml) of a thermophilic aceticlastic methanogen morphologically resembing Methanothrix sp. were found. Methanothrix sp. had apparently displaced Methanosarcina sp. as the dominant aceticlastic methanogen in the digestor. During the period when Methanothrix sp. was apparently dominant, acetate concentrations varied between 0.3 and 1.5 mumol/ml during the daily feeding cycle, and acetate was the precursor of 63 to 66% of the methane produced during peak digestor methanogenesis. The apparent K(m) value obtained for methanogenesis from acetate, 0.3 mumol/ml, indicated that the aceticlastic methanogens were nearly saturated for substrate during most of the digestor cycle. CO(2)-reducing methanogens were capable of methanogenesis at rates more than 12 times greater than those usually found in the digestor. Added propionate (4.5 mumol/ml) was metabolized slowly by the digestor populations and slightly inhibited methanogenesis. Added n-butyrate, isobutyrate, or n-valerate (4.5 mumol/ml each) were broken down within 24 h. Isobutyrate was oxidized to acetate, a novel reaction possibly involving isomerization to n-butyrate. The rapid growth rate and versatile metabolism of Methanosarcina sp. make it a likely organism to be involved in start-up, whereas the low K(m) value of Methanothrix sp. for acetate may cause it to be favored in stable digestors operated with long retention times.  相似文献   

7.
Thermophilic methane production from cattle waste.   总被引:10,自引:9,他引:1       下载免费PDF全文
Methane production from waste of cattle fed a finishing diet was investigated, using four 3-liter-working volume anaerobic digestors at 60 degrees C. At 55 degrees C a start-up culture, in which waste was the only source of bacteria, was generated within 8 days and readily adapted to 60 degrees C, where efficiency of methanogenesis was greater. Increasing the temperature from 60 to 65 degrees C tended to drastically lower efficiency. When feed concentrations of volatile solids (VS, organic matter) were increased in steps of 2% after holding for 1 months at a given concentration, the maximum concentrations for efficient fermentation were 8.2, 10.0, 11.6, and 11.6% for the retention times (RT) of 3, 6, 9, and 12 days, respectively. The VS destructions for these and lower feed concentrations were 31 to 37, 36 to 40, 47 to 49 and 51 to 53% for the 3-, 6-, 9-, and 12-day RT digestors, respectively, and the corresponding methane production rates were about 0.16, 0.18, 0.20, and 0.22 liters/day per g of VS in the feed. Gas contained 52 to 57% methane. At the above RT and feed concentrations, alkalinity rose to 5,000 to 7,700 mg of CaCo3 per liter (pH to 7.5 to 7.8), NH3 plus NH4+ to 64 to 90 mM, and total volatile acids to 850 to 2,050 mg/liter as acetate. The 3-day RT digestor was quite stable up to 8.2% feed VS and at this feed concentration produced methane at the very high rate of 4.5 liters/day per liter of digestor. Increasing the percentage of feed VS beyond those values indicated above resulted in greatly decreased organic matter destruction and methane production, variable decrease in pH, and increased alkalinity, ammonia, and total volatile acid concentrations, with propionate being the first to accumulate in large amounts. In a second experiment with another lot of waste, the results were similar. These studies indicate that loading rates can be much higher than those previously thought useful for maximizing methanogenesis from cattle waste.  相似文献   

8.
Two anaerobic filters, one mesophilic (35 degrees C) and one thermophilic (55 degrees C), were operated with a papermill wastewater at a series of organic loadings. The hydraulic retention time (HRT) ranged from 6 to 24 h with organic loading rates (OLR) 1.07-12.25 g/l per day. At loading rates up to 8.4 g COD/l d, there was no difference in terms of the removal of soluble COD (SCOD) and gas production. At the higher organic loading rate, the SCOD removal performance of thermophilic digester was slightly better compare to mesophilic digester. Similar trend was also observed in terms of the daily methane production. The stability of thermophilic digester was also better than mesophilic digester particularly for the higher organic loadings. Volatile fatty acid accumulation was observed in the effluent of the mesophilic filter at the higher organic loading rates. The Stover-Kincannon model was applied to both digesters and it was found that model was applicable to both digesters for papermill wastewater. K(B) and U(max) constants from the Stover-Kincannon model were also derived.  相似文献   

9.
Terminal Reactions in the Anaerobic Digestion of Animal Waste   总被引:17,自引:13,他引:4       下载免费PDF全文
An anaerobic mesophilic digestor was operated using beef cattle waste (diluted to 5.75% volatile solids) as substrate; retention time was 10 days with daily batch feed. Volatile solids destruction was 36%. Daily gas production rate was 1.8 liters of gas (standard temperature and pressure) per liter of digestor contents (0.99 liters of CH4 per liter of digestor contents). Acetate turnover was measured, and it was calculated that 68% of the CH4 was derived from the methyl group of acetate. When the methanogenic substrates acetic acid or H2/CO2 were added to the digestor on a continuous basis, the microflora were able to adapt and convert them to terminal products while continuing to degrade animal waste to the same extent as without additions. The methanogenic substrates were added at a rate at least 1.5 times the microbial production rate which was measured in the absence of added substrates. Added acetate was converted directly to CH4 by acetoclastic methanogens; H2 addition greatly stimulated acetate production in the digestor. A method is described for the measurement of acetate turnover in batch-fed digestors.  相似文献   

10.
M R Lee  J C Shih 《Applied microbiology》1988,54(10):2335-2341
The effect of anaerobic digestion of poultry waste on oocysts of the protozoan Eimeria tenella, a common enteric pathogen that causes coccidiosis in poultry, was investigated in this study. Thermophilic (50 degrees C) and mesophilic (35 degrees C) anaerobic digestors, with poultry manure as the substrate, were inoculated with the oocysts. The oocysts were damaged during anaerobic digestion, as determined by morphological change and loss of their ability to sporulate. The recovered oocysts were tested for their infectivity in young chicks, as measured by body weight gain, mortality, and cecal lesions. Oocysts lost all their infectivity during thermophilic digestion, while oocysts subjected to mesophilic digestion remained moderately infective in comparison with untreated oocysts, which produced severe coccidiosis, high mortality, and low body weight gain in chicks. Oocysts were inactivated at 50 degrees C when they were suspended in digestor fluid or saline. Inactivation at 35 degrees C was significantly stronger in the digestor fluid than in the saline, which implied that factors other than temperature were involved in the lethal effect of anaerobic digestion on protozoan oocysts. In this study we demonstrated that the treatment of animal waste by anaerobic digestion, especially at a thermophilic temperature, has the benefits of pathogen control and protection of human and animal health in a farm environment.  相似文献   

11.
Effect of anaerobic digestion on oocysts of the protozoan Eimeria tenella   总被引:1,自引:0,他引:1  
The effect of anaerobic digestion of poultry waste on oocysts of the protozoan Eimeria tenella, a common enteric pathogen that causes coccidiosis in poultry, was investigated in this study. Thermophilic (50 degrees C) and mesophilic (35 degrees C) anaerobic digestors, with poultry manure as the substrate, were inoculated with the oocysts. The oocysts were damaged during anaerobic digestion, as determined by morphological change and loss of their ability to sporulate. The recovered oocysts were tested for their infectivity in young chicks, as measured by body weight gain, mortality, and cecal lesions. Oocysts lost all their infectivity during thermophilic digestion, while oocysts subjected to mesophilic digestion remained moderately infective in comparison with untreated oocysts, which produced severe coccidiosis, high mortality, and low body weight gain in chicks. Oocysts were inactivated at 50 degrees C when they were suspended in digestor fluid or saline. Inactivation at 35 degrees C was significantly stronger in the digestor fluid than in the saline, which implied that factors other than temperature were involved in the lethal effect of anaerobic digestion on protozoan oocysts. In this study we demonstrated that the treatment of animal waste by anaerobic digestion, especially at a thermophilic temperature, has the benefits of pathogen control and protection of human and animal health in a farm environment.  相似文献   

12.
Summary Bacterial sulphate reduction and the interaction between sulphate reduction and methane production was studied in an unadapted and sulphate-adapted thermophilic anaerobic sludge digestor. Addition of sulphate to a concentration of 5 mm (100 times the background level) did not influence gas production or volatile fatty acid concentration compared to the control digestor. When sulphate reduction was not limited by the sulphate concentration, the sulphate-adapted digestor had a sulphate reduction rate of 910 mol l–1 day compared with 17 mol l–1 day in the control digestor. The results indicate that the potential for sulphate reduction is low in a thermophilic sewage sludge digestor receiving a low sulphate concentration. Counts of sulphate-reducing bacteria and methanogens showed that sulphate-reducing bacteria were found only in significant numbers in the sulphate-adapted digestor and only with H2/CO2 as substrate. Only low numbers of acetate-utilizing sulphate-reducing bacteria were found in both digestors. When using radio-labelled acetate, the relative percentage of 2-labelled acetate converted to CO2 was two to four times higher in the sulphate-adapted digestor compared to the control digestor. These results suggest that oxidation of acetate seems to play a larger role in the sulphate-adapted digestor.Offprint requests to: B. K. Ahring  相似文献   

13.
A thermophilic strain (D2) identified as a Bacillus sp. was isolated from an aerobic digestor of swine waste after several months of operation at 55 degrees C. Aerobic thermophilic batch treatment of swine waste inoculated with strain D2 was studied in a 4-liter fixed-bed reactor. Stabilization of the waste was achieved in less than 30 h when the original chemical oxygen demand (COD) was between 15 and 20 g/liter or in less than 48 h when the COD was around 35 g/liter. When the COD was higher than 30 g/liter, the pH of the waste reached 9.2 to 9.5 during the treatment, and periodic adjustment of the pH to 8.5 was necessary to maintain the activity of the biofilm. In this reactor, ammoniacal nitrogen was completely eliminated by desorption in less than 72 h of incubation. The different packing materials used resulted in similar rates of degradation of organic matter. The thermophilic treatment was also efficient in the 75-liter digestor, and stabilization was achieved in approximately 50 h. A bank of 22 thermophilic bacterial strains originating from different environments and adapted to the thermophilic treatment of swine waste was established. This thermophilic treatment allows, in one step, rapid stabilization of the waste, elimination of the bad smell, and complete elimination of ammonia nitrogen by stripping.  相似文献   

14.
Microbiological aspects of aerobic thermophilic treatment of swine waste   总被引:1,自引:0,他引:1  
A thermophilic strain (D2) identified as a Bacillus sp. was isolated from an aerobic digestor of swine waste after several months of operation at 55 degrees C. Aerobic thermophilic batch treatment of swine waste inoculated with strain D2 was studied in a 4-liter fixed-bed reactor. Stabilization of the waste was achieved in less than 30 h when the original chemical oxygen demand (COD) was between 15 and 20 g/liter or in less than 48 h when the COD was around 35 g/liter. When the COD was higher than 30 g/liter, the pH of the waste reached 9.2 to 9.5 during the treatment, and periodic adjustment of the pH to 8.5 was necessary to maintain the activity of the biofilm. In this reactor, ammoniacal nitrogen was completely eliminated by desorption in less than 72 h of incubation. The different packing materials used resulted in similar rates of degradation of organic matter. The thermophilic treatment was also efficient in the 75-liter digestor, and stabilization was achieved in approximately 50 h. A bank of 22 thermophilic bacterial strains originating from different environments and adapted to the thermophilic treatment of swine waste was established. This thermophilic treatment allows, in one step, rapid stabilization of the waste, elimination of the bad smell, and complete elimination of ammonia nitrogen by stripping.  相似文献   

15.
Anabaena cylindrica sparged with argon gas produced H2 continuously for 30 days under limited light conditions (6.0 W/m2) and for 18 days under elevated light conditions (32 W/m2) in the absence of exogenous nitrogen. The efficiency of converting visible light energy (32 W/m2) into chemical energy that is trapped as H2 ranged between 0.35 and 0.85% (approximately 13 microliter of H2 per mg [drywt] per h). Ammonium additions (0.2 mM NH4+) at various times destabilized the system and eventually suppressed H2 production completely, as compared with the control. Cultures grown with 5.0 mg of Fe3+ per liter produced H2 at a rate about twice that of cultures with 0.5 mg of Fe3+ per liter. Cultures grown at pH 7.4 produced H2 at the same initial rates as cultures that were grown at pH 9.4; however, the latter cultures continued to produce H2 after CO2 deprivation.  相似文献   

16.
Anabaena cylindrica sparged with argon gas produced H2 continuously for 30 days under limited light conditions (6.0 W/m2) and for 18 days under elevated light conditions (32 W/m2) in the absence of exogenous nitrogen. The efficiency of converting visible light energy (32 W/m2) into chemical energy that is trapped as H2 ranged between 0.35 and 0.85% (approximately 13 microliter of H2 per mg [drywt] per h). Ammonium additions (0.2 mM NH4+) at various times destabilized the system and eventually suppressed H2 production completely, as compared with the control. Cultures grown with 5.0 mg of Fe3+ per liter produced H2 at a rate about twice that of cultures with 0.5 mg of Fe3+ per liter. Cultures grown at pH 7.4 produced H2 at the same initial rates as cultures that were grown at pH 9.4; however, the latter cultures continued to produce H2 after CO2 deprivation.  相似文献   

17.
The development of granular sludge in thermophilic (55 degrees C) upflow anaerobic sludge blanket reactors was investigated. Acetate and a mixture of acetate and butyrate were used as substrates, serving as models for acidified waste-waters. Granular sludge with either Methanothrix or Methanosarcina as the predominant acetate utilizing methanogen was cultivated by allowing the loading rate to increase whenever the acetate concentration in the effluent dropped below 200 and 700 mg COD/L, respectively. The highest methane generation rates, up to 162 kg CH(4)-COD/m(3) day, or 2.53 mole CH(4)/L day, were achieved at hydraulic retention times down to 21 min, with granules consisting of Methanothrix. The formation of Methanothrix granules did not depend on the type of seed material, nor on the addition of inert support particles. The growth of granules proceeded rapidly with adapted seed material, even when the reactors were inoculated with low concentrations. With mesophilic seed materials growth of granules took much longer. Thermophilic Methanothrix granules strongly resemble mesophilic granules of the "filamentous" type. Some factors governing the thermophilic granulation process are discussed.  相似文献   

18.
In order to improve the gas evolution rate during anaerobic digestion of coffee waste by two-phase methane fermentation with slurry-state liquefaction, the liquefaction and gasification processes were separately investigated. In the liquefaction process (including the acidification process), treatment at a pH above 6 had no major effects on the liquefaction and acidification rates. However, the VFA production rates were 880 and 320 mg/l·d during mesophilic (37°C) and thermophilic (53°C) liquefaction, respectively. Mesophilic conditions were superior to thermophilic conditions in the liquefaction. With respect to the gasification process, a high TOC volumetric loading rate of 21 g/l·d was achieved during thermophilic gasification. However, the mesophilic gasification did not yield stable data, even at a low TOC volumetric loading rate of 2 g/l·d. The gas yield was 1.7 l/g TOC consumed during thermophilic gasification. The thermophilic liquefaction and thermophilic gasification reactors were connected in series and a two-phase experiment was conducted with the reactors at various volumetric ratios. The maximum gas evolution rate of 1.43 l/l·d was achieved with a combination of a gasification reactor with a 0.45l working volume and liquefaction reactor with a 2l working volume. This rate was 1.7 times higher than the rate obtained in a previous study.  相似文献   

19.
Chlorella pyrenoidosa was grown in a continuous-flow chemostat under nitrogen-limited conditions. The population density tended to oscillate very significantly. Net specific growth rate was only approximately a hyperbolic function of nitrate concentration in the chemostat. The best estimate of the half-saturation constant for nitrate is 6 mug of nitrogen per liter and it is unlikely that the value is greater than 14 mug per liter or 1 mum nitrate.The dry weight production of cells per unit of nitrogen taken up is a linearly decreasing function of the net specific growth rate with a maximum of 27.1 mg per mg N and a minimum of about 9 mg per mg N. Thus there is considerable storage of nitrogen at high growth rates. Both the dark respiration rate and the rate of photosynthesis at light saturation increase with increasing net specific growth rate.  相似文献   

20.
Mixed-Culture Fermentor for Simulating Methanogenic Digestors   总被引:7,自引:6,他引:1       下载免费PDF全文
Propionate degradation in an anaerobic digestor degrading animal waste (10-day retention time, 5.75 g liter−1 day−1 volatile solids loading rate, 40°C) was 0.304 mM h−1, measured with [2-14C]propionate; this value indicated that CH4 produced from propionate accounted for 14.8% of the CH4 produced in the digestor (34.5%, including acetate produced from propionate). The mean propionate concentration was 0.67 mM, giving a propionate turnover rate of 0.46 h−1. A continuous-, mixed-culture fermentor was developed to mimic the digestor. When degradation rates of methanogenic precursors (H2, CO2, and acetate) equalled those measured in the digestor, propionate degradation was inhibited. When the H2 turnover rate was lowered by decreasing addition of H2-generating substrates or by allowing a portion of the H2 degradation to occur in an isolated compartment, propionate degradation in the fermentor resumed. The possibility is discussed that in digestors, much of the H2 is produced and degraded within microenvironments associated with particles. Thus, the gross turnover rate of H2 measured in digestors is an average, and specific microenvironments within the digestor may have different rates of turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号