首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of mesenchymal stem cells (MSCs) with fibroblast growth factor 2 (FGF-2) during monolayer expansion leads to increased expression of cartilage-related molecules during subsequent pellet chondrogenesis. This may be due to faster differentiation and/or a durable change in phenotype. In order to evaluate changes over time, we assessed chondrogenesis of human MSCs at early and late time points during pellet culture using real-time PCR, measurement of glycosaminoglycan accumulation, and histology. Marked enhancement of chondrogenesis was seen early compared to controls. However, the differences from controls in gene expression dramatically diminished over time. Depending on conditions, increases in glycosaminoglycan accumulation were maintained. These results suggest that FGF-2 can enhance the kinetics of MSC chondrogenesis, leading to early differentiation, possibly by a priming mechanism.  相似文献   

2.
3.
Fibroblast growth factor-2   总被引:23,自引:0,他引:23  
Fibroblast growth factor-2 (FGF-2) is a member of a large family of proteins that bind heparin and heparan sulfate and modulate the function of a wide range of cell types. FGF-2 stimulates the growth and development of new blood vessels (angiogenesis) that contribute to the pathogenesis of several diseases (i.e. cancer, atherosclerosis), normal wound healing and tissue development. FGF-2 contains a number of basic residues (pI 9.6) and consists of 12 anti-parallel beta-sheets organized into a trigonal pyrimidal structure. FGF-2 binds to four cell surface receptors expressed as a number of splice variants. Many of the biological activities of FGF-2 have been found to depend on its receptor's intrinsic tyrosine kinase activity and second messengers such as the mitogen activated protein kinases. However, considerable evidence suggest that intracellular FGF-2 might have a direct biological role particularly within the nucleus. In addition, heparan sulfate proteoglycans have been demonstrated to enhance and inhibit FGF-2 activity. The possibility that FGF-2 activity can be manipulated through alterations in heparan sulfate-binding is currently being exploited in the development of clinical applications aimed at modulating either endogenous or administered FGF-2 activity.  相似文献   

4.
Fibroblast growth factor-2   总被引:47,自引:0,他引:47  
Fibroblast growth factor-2 (FGF-2) is a heparin-binding growth factor which occurs in several isoforms resulting from alternative initiations of translation: an 18 kD cytoplasmic isoform and four larger molecular weight nuclear isoforms (22, 22.5, 24 and 34 kD). FGF-2 has pleiotropic roles in many cell types and tissues; it is a motogenic, angiogenic and survival factor which is involved in cell migration, cell differentiation and in a variety of developmental processes. Although devoid of signal peptide, it could be secreted. It acts mainly through a paracrine/autocrine mechanism involving high affinity transmembrane receptors and heparan sulfate proteoglycan low affinity receptors, but also through still unknown intracrine process(es) on intracellular targets. FGF-2 has many biological functions which are probably isoform-specific. Nevertheless, FGF-2 is not essential for embryonic development as knock-out mice for the growth factor are viable and fertile although they exhibit abnormalities in neuronal differentiation. Use of FGF-2 as therapeutic agent for the treatment of ischemic cardiovascular disease is promising and clinical trials are in progress.  相似文献   

5.
6.
Mesenchymal condensation is a critical transitional stage that precedes cartilage formation during embryonic development. We hypothesized that "priming" hMSCs to recapitulate mesenchymal condensation events prior to inducing differentiation would enhance their subsequent chondrogenic properties. Our prior studies have suggested that exposing hMSCs to hypoxia (2% O(2)) induces condensation-like effects. We therefore assessed the effect of preconditioning for different time periods on the expression of condensation specific genes by growing hMSCs in expansion medium under different normoxic (20% O(2)) and hypoxic conditions for up to 2 weeks, and subsequently induced chondrogenesis of preconditioned hMSCs. The total cultivation time for each group was 4 weeks and the chondrogenic properties were assessed using gene expression, biochemical analysis, and histological staining. Our results demonstrated the benefits of preconditioning were both time- and oxygen-dependent. Condensation specific genes, SOX-9 and NCAM, were significantly up-regulated in hypoxic conditions at the end of 1 week. COL X and MMP13 expression was also lower than the normoxic samples at this time point. However, this group did not exhibit more efficient chondrogenesis after 4 weeks. Instead, hMSCs preconditioned for 1 week and subsequently differentiated, both under 20% O(2), resulted in the most efficient chondrogenesis. Interestingly, while hypoxia appears to positively enhance expression of chondrogenic genes, this did not produce an enhanced matrix accumulation. The results of this study emphasize the significance of considering the timing of specific cues in developing protocols for stem cell-based therapies and underscore the complexity in regulating stem cell differentiation and tissue formation.  相似文献   

7.
8.
Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high‐density culture performed with TGF‐β‐driven chondrogenic induction medium. Treatment of the Midazolam dose‐dependently inhibited chondrogenesis, examined using Alcian blue‐stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor‐β‐induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam‐induced congenital malformations of the musculoskeletal system through PBR.  相似文献   

9.
10.

Introduction  

Infrapatellar fat pad (IPFP) is a possible source of stem cells for the repair of articular cartilage defects. In this study, adherent proliferative cells were isolated from digests of IPFP tissue. The effects of the expansion of these cells in fibroblast growth factor-2 (FGF-2) were tested on their proliferation, characterisation, and chondrogenic potential.  相似文献   

11.
The objective of this study was to investigate the influence of dynamic compressive loading on chondrogenesis of mesenchymal stem cells (MSCs) in the presence of TGF-β3. Isolated porcine MSCs were suspended in 2% agarose and subjected to intermittent dynamic compression (10% strain) for a period of 42 days in a dynamic compression bioreactor. After 42 days in culture, the free-swelling specimens exhibited more intense alcian blue staining for proteoglycans, while immunohistochemical analysis revealed increased collagen type II immunoreactivity. Glycosaminoglycan (GAG) content increased with time for both free-swelling and dynamically loaded constructs, and by day 42 it was significantly higher in both the core (2.5 ± 0.21%w/w vs. 0.94 ± 0.03%w/w) and annulus (1.09 ± 0.09%w/w vs. 0.59 ± 0.08%w/w) of free-swelling constructs compared to dynamically loaded constructs. This result suggests that further optimization is required in controlling the biomechanical and/or the biochemical environment if such stimuli are to have beneficial effects in generating functional cartilaginous tissue.  相似文献   

12.

Objectives

To compare in vitro chondrogenesis from bone marrow-derived mesenchymal stem cells using concave microwell plates with those obtained using culture tubes.

Results

Pellets cultured in concave microwell plates had a significantly higher level of GAG per DNA content and greater proteoglycan content than those cultured in tubes at day 7 and 14. Three chondrogenic markers, SOX-9, COL2A1 and aggrecan, showed significantly higher expression in pellets cultured in concave microwell plates than those cultured in tubes at day 7 and 14. At day 21, there was not a significant difference in the expression of these markers. COL10A1, the typical hypertrophy marker, was significantly lower in concave microwell plates during the whole culture period. Runx-2, a marker of hypertrophy and osteogenesis, was significantly lower at day 7 in pellets cultured in concave microwell plates than those cultured in tubes.

Conclusion

Concave microwell plates provide a convenient and effective tool for the study of in vitro chondrogenesis and may replace the use of propylene culture tube.
  相似文献   

13.
The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.  相似文献   

14.
The expression of alpha-smooth muscle actin (SMA) by human mesenchymal stem cells (hMSCs) during chondrogenesis was investigated by the use of pellet culture. Undifferentiated hMSCs expressed low but detectable amounts of SMA and the addition of transforming growth factor β1 (TGF-β1) to the culture medium increased SMA expression in a dose-dependent manner. Differentiation in pellet culture was rapidly induced in the presence of TGF-β1 and was accompanied by the development of annular layers at the surface of the pellet. These peripheral layers lacked expression of glycosaminoglycan and type II collagen during early differentiation. Progress in differentiation increased the synthesis of glycosaminoglycan and type II collagen and the expression of SMA in these layers. Double-staining for type II collagen and SMA by immunofluorescence demonstrated the differentiation of hMSCs into cells positive for these two proteins. The addition of cytochalasin D, a potent inhibitor of the polymerization of actin microfilaments, caused damage to the structural integrity and surface smoothness of the chondrogenic pellets. The SMA-positive cells in the peripheral layers of the chondrogenic pellets mimic those within the superficial layer of articular cartilage and are speculated to play a major role in cartilage development and maintenance.This work was supported by grants R92-001-1 and R92-001-2 from the Veterans General Hospital, Taipei, and grant NSC-92-2314-B-075-022 from the National Science Council, Taiwan.  相似文献   

15.
Fibroblast growth factor-10 is a mitogen for urothelial cells   总被引:5,自引:0,他引:5  
Fibroblast growth factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.  相似文献   

16.
Chan SS  Li HJ  Hsueh YC  Lee DS  Chen JH  Hwang SM  Chen CY  Shih E  Hsieh PC 《PloS one》2010,5(12):e14414

Background

The fibroblast growth factor (FGF) family is essential to normal heart development. Yet, its contribution to cardiomyocyte differentiation from stem cells has not been systemically studied. In this study, we examined the mechanisms and characters of cardiomyocyte differentiation from FGF family protein treated embryonic stem (ES) cells and induced pluripotent stem (iPS) cells.

Methodology/Principal Findings

We used mouse ES cells stably transfected with a cardiac-specific α-myosin heavy chain (αMHC) promoter-driven enhanced green fluorescent protein (EGFP) and mouse iPS cells to investigate cardiomyocyte differentiation. During cardiomyocyte differentiation from mouse ES cells, FGF-3, -8, -10, -11, -13 and -15 showed an expression pattern similar to the mesodermal marker Brachyury and the cardiovascular progenitor marker Flk-1. Among them, FGF-10 induced cardiomyocyte differentiation in a time- and concentration-dependent manner. FGF-10 neutralizing antibody, small molecule FGF receptor antagonist PD173074 and FGF-10 and FGF receptor-2 short hairpin RNAs inhibited cardiomyocyte differentiation. FGF-10 also increased mouse iPS cell differentiation into cardiomyocyte lineage, and this effect was abolished by FGF-10 neutralizing antibody or PD173074. Following Gene Ontology analysis, microarray data indicated that genes involved in cardiac development were upregulated after FGF-10 treatment. In vivo, intramyocardial co-administration of FGF-10 and ES cells demonstrated that FGF-10 also promoted cardiomyocyte differentiation.

Conclusion/Significance

FGF-10 induced cardiomyocyte differentiation from ES cells and iPS cells, which may have potential for translation into clinical applications.  相似文献   

17.
Im GI  Lee JM  Kim HJ 《Biotechnology letters》2011,33(5):1061-1068
The long-term effects (~3 weeks) of two Wnt inhibitors (dickkopf [DKK]-1 and secreted frizzled-related protein [sFRP]-1), on the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) was determined. Wnt inhibitors significantly increased the amount of glycosaminoglycan (GAG) in treated pellets (P < 0.05). The gene expression of COL2A1 increased and COL1A1 decreased while the gene expression of SOX-9 and COL10A1 did not change significantly after three weeks of in vitro culture. The protein expression of type II collagen significantly increased (P < 0.05) and that of type I collagen significantly decreased (P < 0.05) while SOX-9 and type X collagen protein expression was unaffected. These findings suggest that Wnt inhibitors promote the chondrogenic differentiation of hMSCs when treated for three weeks.  相似文献   

18.
19.
Chen J  Wang C  Lü S  Wu J  Guo X  Duan C  Dong L  Song Y  Zhang J  Jing D  Wu L  Ding J  Li D 《Cell and tissue research》2005,319(3):429-438
The purpose of this study has been to investigate the possible effects of the normal joint cavity environment on chondrocytic differentiation of bone-marrow-derived mesenchymal stem cells (MSCs). Autologous bone marrow was aspirated from the iliac crest of male sheep. MSCs were purified, expanded, and labeled with the fluorescent dye PKH26. Labeled MSCs were then grown on a three-dimensional porous scaffold of poly (L-lactic-co-glycolic acid) in vitro and implanted into the joint cavity by a surgical procedure. At 4 or 8 weeks after implantation, the implants were removed for histochemical and immunohistochemical analysis. The cells labeled with red fluorescent PKH26 in the implants expressed type II collagen and synthesized sulfated proteoglycans. However, the osteoblast-specific marker, osteocalcin, was not detected by immunohistochemistry indicating that the implanted MSCs had not differentiated into osteoblasts by being directly exposed to the normal joint cavity. To investigate the possible factors involved in chondrocytic differentiation of MSCs further, we co-cultured sheep MSCs with the main components of the normal joint cavity, viz., synovial fluid or synovial cells, in vitro. After 1 or 2 weeks of co-culture, the MSCs in both co-culture systems expressed markers of chondrogenesis. These results suggest that synovial fluid and synovium from normal joint cavity are important for the chondrocytic differentiation of adult bone-marrow-derived MSCs.This work was supported by the National Natural Science Foundation of China (nos. 39900036, 20174006, and 20221402), the National Advanced Technology Programs of China (nos. 2003AA744051, 2003AA205041), the Award Foundation for Young Teachers from the Ministry of Education, 973 project (no. G1999054306-03), and the 248 key innovative project of Beijing (no. H010210190123).  相似文献   

20.
Osteopontin is a protein found in the bone-related matrix and plays multiple regulatory roles in mineralizing and non-mineralizing tissue. In osteogenic cell-lines, the expression of osteopontin increases with the progression of differentiation, but both the expression and function of osteopontin vary with the cell type and its activation state. In this study, we examined the expression of osteopontin by clones established from mouse periodontal ligament, in response to inorganic phosphate and fibroblast growth factor (FGF)-2, which can induce periodontal tissue regeneration. The involvement of inorganic phosphate in the expression of osteopontin during the course of cell differentiation of a clone MPDL22 was confirmed by addition of foscarnet, an inorganic phosphate transport inhibitor. Although FGF-2 decreased the mRNA expression of almost every bone-related protein in MPDL22, FGF-2 upregulated the expression of osteopontin in MPDL22 at both mRNA and protein levels. Interestingly, FGF-2 enhanced the concentration of osteopontin in the culture supernatant of MPDL22, whereas inorganic phosphate did not. The FGF-2-induced osteopontin in the culture supernatant seems to be involved in cell survival activity. An immunohistochemical study showed that the FGF-2-induced osteopontin was mainly present in perinuclear matrices while the inorganic phosphate-induced osteopontin was associated with extracellular matrices in addition to perinuclear matrices. The present results indicated that FGF-2 induces unique expression of osteopontin, which may play a role different from the other bone-related proteins during the process of periodontal tissue regeneration by FGF-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号