首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
因为汉字具有与拼音字母语言不同的方形书写结构以及字型映射规则,已有很多研究关注这两种语言是否存在着不同的阅读机制,但还在争论中.本研究通过功能磁共振技术,采用汉字和英文两种语言的真字(词),假字(词)以及非字(词)作为刺激材料来进一步研究此问题.研究结果显示:在高频字(词)条件下,汉字和英文具有相似的阅读机制,但在阅读假字(词)时,它们的阅读机制差异很大.具体表现为英文假词激活了左脑缘上回,而汉字假词激活了左脑额中回.研究结果说明:1)汉英双语者可能采用了两种不同的双线路机制来读取汉字和英文单词.2)汉英双语者在阅读英文假词时,须借助缘上回脑区进行字型转换.而在阅读汉字假字时,则需通过额中回进行笔画分析.  相似文献   

3.
Recent studies have found holistic processing to be a marker of expertise for perception of words in alphabetic (e.g., English) and non-alphabetic (e.g., Chinese) writing systems, consistent with what has been found for faces and other objects of face-like expertise. It is unknown, however, whether holistic processing of words occurs in an early, perceptual stage as it does for faces. We examined how early holistic processing of Chinese characters emerges by recording the event-related potentials (ERPs) in an adaptation paradigm. Participants judged if the top parts of two sequentially presented characters were the same or different while ignoring the bottom part. An early potential (P1) at the posterior channels was smaller when the attended top parts were the same compared with when they are different, indicating an adaptation effect. Critically, for trials with identical top parts, P1 was larger when the irrelevant bottom parts were different, indicating a release of adaptation. This effect was present only when the two character parts were aligned but not misaligned, and only for characters but not for pseudocharacters. The finding of early sensitivity to all parts of a Chinese character suggests that Chinese characters are represented holistically at a perceptual level.  相似文献   

4.
5.
6.
Xue G  Mei L  Chen C  Lu ZL  Poldrack RA  Dong Q 《PloS one》2010,5(10):e13204

Background

The left midfusiform and adjacent regions have been implicated in processing and memorizing familiar words, yet its role in memorizing novel characters has not been well understood.

Methodology/Principal Findings

Using functional MRI, the present study examined the hypothesis that the left midfusiform is also involved in memorizing novel characters and spaced learning could enhance the memory by enhancing the left midfusiform activity during learning. Nineteen native Chinese readers were scanned while memorizing the visual form of 120 Korean characters that were novel to the subjects. Each character was repeated four times during learning. Repetition suppression was manipulated by using two different repetition schedules: massed learning and spaced learning, pseudo-randomly mixed within the same scanning session. Under the massed learning condition, the four repetitions were consecutive (with a jittered inter-repetition interval to improve the design efficiency). Under the spaced learning condition, the four repetitions were interleaved with a minimal inter-repetition lag of 6 stimuli. Spaced learning significantly improved participants'' performance during the recognition memory test administered one hour after the scan. Stronger left midfusiform and inferior temporal gyrus activities during learning (summed across four repetitions) were associated with better memory of the characters, based on both within- and cross-subjects analyses. Compared to massed learning, spaced learning significantly reduced neural repetition suppression and increased the overall activities in these regions, which were associated with better memory for novel characters.

Conclusions/Significance

These results demonstrated a strong link between cortical activity in the left midfusiform and memory for novel characters, and thus challenge the visual word form area (VWFA) hypothesis. Our results also shed light on the neural mechanisms of the spacing effect in memorizing novel characters.  相似文献   

7.
8.
9.

Background

In alphabetic languages, emerging evidence from behavioral and neuroimaging studies shows the rapid and automatic activation of phonological information in visual word recognition. In the mapping from orthography to phonology, unlike most alphabetic languages in which there is a natural correspondence between the visual and phonological forms, in logographic Chinese, the mapping between visual and phonological forms is rather arbitrary and depends on learning and experience. The issue of whether the phonological information is rapidly and automatically extracted in Chinese characters by the brain has not yet been thoroughly addressed.

Methodology/Principal Findings

We continuously presented Chinese characters differing in orthography and meaning to adult native Mandarin Chinese speakers to construct a constant varying visual stream. In the stream, most stimuli were homophones of Chinese characters: The phonological features embedded in these visual characters were the same, including consonants, vowels and the lexical tone. Occasionally, the rule of phonology was randomly violated by characters whose phonological features differed in the lexical tone.

Conclusions/Significance

We showed that the violation of the lexical tone phonology evoked an early, robust visual response, as revealed by whole-head electrical recordings of the visual mismatch negativity (vMMN), indicating the rapid extraction of phonological information embedded in Chinese characters. Source analysis revealed that the vMMN was involved in neural activations of the visual cortex, suggesting that the visual sensory memory is sensitive to phonological information embedded in visual words at an early processing stage.  相似文献   

10.
Luo B  Shan C  Zhu R  Weng X  He S 《PloS one》2011,6(8):e23997
It remains controversial and hotly debated whether foveal information is double-projected to both hemispheres or split at the midline between the two hemispheres. We investigated this issue in a unique patient with lesions in the splenium of the corpus callosum and the left medial occipitotemporal region, through a series of neuropsychological tests and multimodal MRI scans. Behavioral experiments showed that (1) the patient had difficulties in reading simple and compound Chinese characters when they were presented in the foveal but left to the fixation, (2) he failed to recognize the left component of compound characters when the compound characters were presented in the central foveal field, (3) his judgments of the gender of centrally presented chimeric faces were exclusively based on the left half-face and he was unaware that the faces were chimeric. Functional MRI data showed that Chinese characters, only when presented in the right foveal field but not in the left foveal field, activated a region in the left occipitotemporal sulcus in the mid-fusiform, which is recognized as visual word form area. Together with existing evidence in the literature, results of the current study suggest that the representation of foveal stimuli is functionally split at object processing levels.  相似文献   

11.
Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing.  相似文献   

12.
Park J  Park DC  Polk TA 《PloS one》2012,7(2):e31512
The visual word form area (VWFA) is a region of left inferior occipitotemporal cortex that is critically involved in visual word recognition. Previous studies have investigated whether and how experience shapes the functional characteristics of VWFA by comparing neural response magnitude in response to words and nonwords. Conflicting results have been obtained, however, perhaps because response magnitude can be influenced by other factors such as attention. In this study, we measured neural activity in monozygotic twins, using functional magnetic resonance imaging. This allowed us to quantify differences in unique environmental contributions to neural activation evoked by words, pseudowords, consonant strings, and false fonts in the VWFA and striate cortex. The results demonstrate significantly greater effects of unique environment in the word and pseudoword conditions compared to the consonant string and false font conditions both in VWFA and in left striate cortex. These findings provide direct evidence for environmental contributions to the neural architecture for reading, and suggest that learning phonology and/or orthographic patterns plays the biggest role in shaping that architecture.  相似文献   

13.
Repeated visual processing of an unfamiliar face suppresses neural activity in face-specific areas of the occipito-temporal cortex. This "repetition suppression" (RS) is a primitive mechanism involved in learning of unfamiliar faces, which can be detected through amplitude reduction of the N170 event-related potential (ERP). The dorsolateral prefrontal cortex (DLPFC) exerts top-down influence on early visual processing. However, its contribution to N170 RS and learning of unfamiliar faces remains unclear. Transcranial direct current stimulation (tDCS) transiently increases or decreases cortical excitability, as a function of polarity. We hypothesized that DLPFC excitability modulation by tDCS would cause polarity-dependent modulations of N170 RS during encoding of unfamiliar faces. tDCS-induced N170 RS enhancement would improve long-term recognition reaction time (RT) and/or accuracy rates, whereas N170 RS impairment would compromise recognition ability. Participants underwent three tDCS conditions in random order at ∼72 hour intervals: right anodal/left cathodal, right cathodal/left anodal and sham. Immediately following tDCS conditions, an EEG was recorded during encoding of unfamiliar faces for assessment of P100 and N170 visual ERPs. The P3a component was analyzed to detect prefrontal function modulation. Recognition tasks were administered ∼72 hours following encoding. Results indicate the right anodal/left cathodal condition facilitated N170 RS and induced larger P3a amplitudes, leading to faster recognition RT. Conversely, the right cathodal/left anodal condition caused N170 amplitude and RTs to increase, and a delay in P3a latency. These data demonstrate that DLPFC excitability modulation can influence early visual encoding of unfamiliar faces, highlighting the importance of DLPFC in basic learning mechanisms.  相似文献   

14.

Background

It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question.

Methodology/Principal Findings

MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100–250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at ∼130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at ∼115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at ∼140 ms, at a location coincident with the fMRI–defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus.

Conclusions/Significance

These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.  相似文献   

15.
Zhang ZB  Yu LJ  Yang KJ  Xu LW  Sheng TX  Hao P  Wang YP  Meng FP 《遗传》2011,33(1):54-59
为了探讨延边朝鲜族和汉族脂联素基因启动子单核苷酸多态性(SNPs)与原发性高血压(EH)的关系, 文章采用PCR产物直接测序方法检测了220例EH患者和268例对照个体的脂联素启动子5个SNPs位点: -11426A>G(rs16861194)、-11391G>A(rs17300539)、-11377C>G(rs62620185)、-11156insCA(rs60806105)、-11043C>T(rs76786086), 氧化酶法测定空腹血糖、甘油三酯、总胆固醇、低密度脂蛋白、高密度脂蛋白, 酶联免疫吸附法(ELISA)测定血浆脂联素和胰岛素。结果显示: (1) -11426A>G、-11377C>G 和-11156insCA 3个位点具有多态性, 且它们的基因型频率分布符合Hardy-Weinberg平衡定律(P>0.05), -11391G>A和-11043C>T位点无多态性; (2) -11426A>G和-11156insCA呈完全连锁不平衡(D’=1; r2=1); (3) -11426G基因频率比较, 朝鲜族(21.10%)高于汉族(12.05%), 汉族EH组高于对照组; -11377C>G的基因型和基因频率在朝鲜族和汉族间及同一民族内EH组和对照组间比较均无统计学意义(P>0.05); (4)单倍型?11426G -11377C的频率, 汉族EH组高于对照组(P<0.05), 朝鲜族EH组和对照组比较无统计学意义(P>0.05); (5)EH组的血浆脂联素水平明显低于对照组(P<0.001)。据此得出结论: (1)首次发现?11426A>G和?11156insCA呈完全连锁不平衡, -11426 A>G的多态性在朝鲜族和汉族中存在民族差异; (2) -11426 G和-11426G -11377C是延边汉族EH的危险因子和危险单倍型, 但不是朝鲜族的; (3)低血浆脂联素是延边朝鲜族和汉族EH的重要危险因素; (4)血浆脂联素水平与-11426A>G基因型无关。  相似文献   

16.
17.
A century of neurology and neuroscience shows that seeing words depends on ventral occipital-temporal (VOT) circuitry. Typically, reading is learned using high-contrast line-contour words. We explored whether a specific VOT region, the visual word form area (VWFA), learns to see only these words or recognizes words independent of the specific shape-defining visual features. Word forms were created using atypical features (motion-dots, luminance-dots) whose statistical properties control word-visibility. We measured fMRI responses as word form visibility varied, and we used TMS to interfere with neural processing in specific cortical circuits, while subjects performed a lexical decision task. For all features, VWFA responses increased with word-visibility and correlated with performance. TMS applied to motion-specialized area hMT+ disrupted reading performance for motion-dots, but not line-contours or luminance-dots. A quantitative model describes feature-convergence in the VWFA and relates VWFA responses to behavioral performance. These findings suggest how visual feature-tolerance in the reading network arises through signal convergence from feature-specialized cortical areas.  相似文献   

18.

Background

To evaluate systematically the cognitive deficits following posterior cerebral artery (PCA) strokes, especially agnosic visual disorders, and to study anatomical-clinical correlations.

Methods and Findings

We investigated 31 patients at the chronic stage (mean duration of 29.1 months post infarct) with standardized cognitive tests. New experimental tests were used to assess visual impairments for words, faces, houses, and objects. Forty-one healthy subjects participated as controls. Brain lesions were normalized, combined, and related to occipitotemporal areas responsive to specific visual categories, including words (VWFA), faces (FFA and OFA), houses (PPA) and common objects (LOC). Lesions were located in the left hemisphere in 15 patients, in the right in 13, and bilaterally in 3. Visual field defects were found in 23 patients. Twenty patients had a visual disorder in at least one of the experimental tests (9 with faces, 10 with houses, 7 with phones, 3 with words). Six patients had a deficit just for a single category of stimulus. The regions of maximum overlap of brain lesions associated with a deficit for a given category of stimuli were contiguous to the peaks of the corresponding functional areas as identified in normal subjects. However, the strength of anatomical-clinical correlations was greater for words than for faces or houses, probably due to the stronger lateralization of the VWFA, as compared to the FFA or the PPA.

Conclusions

Agnosic visual disorders following PCA infarcts are more frequent than previously reported. Dedicated batteries of tests, such as those developed here, are required to identify such deficits, which may escape clinical notice. The spatial relationships of lesions and of regions activated in normal subjects predict the nature of the deficits, although individual variability and bilaterally represented systems may blur those correlations.  相似文献   

19.
Resting-state functional connectivity (RSFC) offers a novel approach to reveal the temporal synchronization of functionally related brain regions. Recent studies have identified several RSFCs whose strength was associated with reading competence in alphabetic languages. In the present study, we examined the role of intrinsic functional relations for reading a non-alphabetic language – Chinese – by correlating RSFC maps of nine Chinese reading-related seed regions and reaction time in the single-character reading task. We found that Chinese reading efficiency was positively correlated with the connection between left inferior occipital gyrus and left superior parietal lobule, between right posterior fusiform gyrus and right superior parietal lobule, and between left inferior temporal gyrus and left inferior parietal lobule. These results could not be attributed to inter-individual differences arising from the peripheral processes of the reading task such as visual input detection and articulation. The observed RSFC-reading correlation relationships are discussed in the framework of Chinese character reading, including visuospatial analyses and semantic/phonological processes.  相似文献   

20.
The processing of faces relies on a specialized neural system comprising bilateral cortical structures with a dominance of the right hemisphere. However, due to inconsistencies of earlier findings as well as more recent results such functional lateralization has become a topic of discussion. In particular, studies employing behavioural tasks and electrophysiological methods indicate a dominance of the right hemisphere during face perception only in men whereas women exhibit symmetric and bilateral face processing. The aim of this study was to further investigate such sex differences in hemispheric processing of personally familiar and opposite-sex faces using whole-head magnetoencephalography (MEG). We found a right-lateralized M170-component in occipito-temporal sensor clusters in men as opposed to a bilateral response in women. Furthermore, the same pattern was obtained in performing dipole localization and determining dipole strength in the M170-timewindow. These results suggest asymmetric involvement of face-responsive neural structures in men and allow to ascribe this asymmetry to the fusiform gyrus. This specifies findings from previous investigations employing event-related potentials (ERP) and LORETA reconstruction methods yielding rather extended bilateral activations showing left asymmetry in women and right lateralization in men. We discuss our finding of an asymmetric fusiform activation pattern in men in terms of holistic face processing during face evaluation and sex differences with regard to visual strategies in general and interest for opposite faces in special. Taken together the pattern of hemispheric specialization observed here yields new insights into sex differences in face perception and entails further questions about interactions between biological sex, psychological gender and influences that might be stimulus-driven or task dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号