首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
AMP-activated protein kinase (AMPK) is a critical regulator of glucose metabolism. To elucidate the biochemical mechanisms by which AMPK regulates glucose and fat metabolism, we conducted a yeast two-hybrid screen to identify its interacting partners. A yeast two-hybrid system was used to screen a mouse embryo cDNA library for proteins able to bind mouse AMPKα1. We also demonstrated an endogenous interaction between AMPKα1 and its interacting partner by co-immunoprecipitation of the endogenous proteins using specific antibodies in HepG2 cells, and in rat kidney, liver, skeletal muscle, and fat tissue. We show that secreted protein acidic and rich in cysteine (SPARC) is an AMPK-interacting protein, and the two proteins enhance each other. AMPK activation increases SPARC expression, and knockdown of AMPK to inhibit endogenous AMPK expression reduces SPARC protein levels. On the other hand, SPARC siRNA reduces AICAR-stimulated AMPK phosphorylation. SPARC affects AMPK-mediated glucose metabolism through regulation of Glut4 expression in L6 myocytes. Our findings suggest that SPARC may be involved in regulating glucose metabolism via AMPK activation. These results provide a starting point for efforts to clarify the relationship between AMPK and SPARC, and deepen our understanding of their roles in fat and glucose metabolism.  相似文献   

6.
7.
8.
Cholesterol 7α-hydroxylase (cyp7a) mediates cholesterol elimination in the liver by catalyzing the first and rate-limiting step in the conversion of cholesterol into bile acids. Peroxisome proliferator-activated receptor α (PPARα; NR1C1) and liver X receptor α (LXRα; NR1H3) are two nuclear receptors that stimulate the murine Cyp7a1 gene. Here we report that co-expression of PPARα and LXRα in hepatoma cells abolishes the stimulation of Cyp7a1 gene promoter in response to their respective agonists. PPARα and LXRα form an atypical heterodimer that binds to two directly adjacent hexameric sequences localized within overlapping PPARα and LXRα response elements (termed Site I), antagonizing the interaction of PPARα:retinoid X receptor α (RXRα) or RXRα:LXRα with the Cyp7a1 gene promoter. Mutations within either hexameric sequences that specifically abolished LXRα:PPARα heterodimer binding to the murine Cyp7a1 Site I also relieved promoter inhibition. The LXRα:PPARα heterodimer may be important in coordinating the expression of genes that encode proteins involved in metabolism of fats and cholesterol.  相似文献   

9.
Steatosis is the first step in the development of non-alcoholic fatty liver disease (NAFLD). However, the mechanisms involved in its pathogenesis are not fully understood. Many nuclear receptors (NRs) involved in energy homeostasis and biotransformation constitute a network connecting fatty acids, cholesterol and xenobiotic metabolisms; therefore, multiple NRs and their ligands may play a prominent role in liver fat metabolism and accumulation. In this study we have attempted to gain insight into the relevance of the NR superfamily in NAFLD by investigating the steatogenic potential of 76 different NR ligands in fatty acid overloaded human hepatocytes and hepatoma cells. Moreover, we have determined the mRNA expression level of 24 NRs to correlate the steatogenic potential of the ligands with the expression of their associated NRs in the cultured cells. Our results demonstrate that 18% of the examined NR ligands enhanced lipid accumulation in human hepatocytes and/or hepatoma cells. Among them, ligands of PPARγ (e.g., thiazolidinediones), LXR (paxilline and 24(S),25-epoxycholesterol), PXR (hyperforin), CAR (3α,5α-androstenol), ERα (tamoxifen), FXR (Z-guggulsterone), VDR (25-hydroxyvitamin D3) and particular retinoids and farnesoids showed a significant pro-steatotic effect. The mRNA level of most of the NRs examined was well preserved in human hepatocytes, but HepG2 showed a deranged profile, where many of the receptors had a marginal or negligible level of expression in comparison with the human liver. By comparing the steatogenic effect of NR ligands with the NR expression levels, we conclude that LXR, PXR, RAR and PPARγ ligands likely induce fat accumulation by a NR-dependent mechanism. Indeed, over-expression of PXR in HepG2 cells enhanced the steatogenic effect of hyperforin and rifampicin. However, the accumulation of fat induced by other ligands did not correlate with the expression of their associated NR. Our results also suggest that human hepatocytes cultured with free fatty acids offer a highly valuable in vitro system to investigate the pathogenesis and therapeutics of the human fatty liver.  相似文献   

10.
11.
The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h. RARα and RXRβ expression level was quantified and daily expression patterns of clock BMAL1, PER1, RORα, and REVERB genes, RORα and REVERB proteins, as well as temporal expression of cognition-related RC3 and BDNF genes were determined in the hippocampus of the two groups of rats. Our results show significant daily variations of BMAL1, PER1, RORα, and REVERB genes, RORα and REVERB proteins and, consequently, daily oscillating expression of RC3 and BDNF genes in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level as well as the amplitude of PER1, REVERB gene, and REVERB protein rhythms, and phase-shifted the daily peaks of BMAL1 and RORα mRNA, RORα protein, and RC3 and BDNF mRNA levels. Thus, nutritional factors, such as vitamin A and its derivatives the retinoids, might modulate daily patterns of BDNF and RC3 expression in the hippocampus, and they could be essential to maintain an optimal daily performance at molecular level in this learning-and-memory-related brain area.  相似文献   

12.
The circadian clock has a central role in physiological adaption and anticipation of day/night changes. In a genetic screen for novel regulators of circadian rhythms, we found that mice lacking MAGED1 (Melanoma Antigen Family D1) exhibit a shortened period and altered rest–activity bouts. These circadian phenotypes are proposed to be caused by a direct effect on the core molecular clock network that reduces the robustness of the circadian clock. We provide in vitro and in vivo evidence indicating that MAGED1 binds to RORα to bring about positive and negative effects on core clock genes of Bmal1, Rev‐erbα and E4bp4 expression through the Rev‐Erbα/ROR responsive elements (RORE). Maged1 is a non‐rhythmic gene that, by binding RORα in non‐circadian way, enhances rhythmic input and buffers the circadian system from irrelevant, perturbing stimuli or noise. We have thus identified and defined a novel circadian regulator, Maged1, which is indispensable for the robustness of the circadian clock to better serve the organism.  相似文献   

13.
14.
15.
Hepcidin synthesis is reported to be inadequate according to the body iron store in patients with non-alcoholic fatty liver disease (NAFLD) undergoing hepatic iron overload (HIO). However, the underlying mechanisms remain unclear. We hypothesize that hepatocyte nuclear factor-4α (HNF-4α) may negatively regulate hepcidin expression and contribute to hepcidin deficiency in NAFLD patients. The effect of HNF-4α on hepcidin expression was observed by transfecting specific HNF-4α small interfering RNA (siRNA) or plasmids into HepG2 cells. Both direct and indirect mechanisms involved in the regulation of HNF-4α on hepcidin were detected by real-time PCR, Western blotting, chromatin immunoprecipitation (chIP), and reporter genes. It was found that HNF-4α suppressed hepcidin messenger RNA (mRNA) and protein expressions in HepG2 cells, and this suppressive effect was independent of the potential HNF-4α response elements. Phosphorylation of SMAD1 but not STAT3 was inactivated by HNF-4α, and the SMAD4 response element was found essential to HNF-4α-induced hepcidin reduction. Neither inhibitory SMADs, SMAD6, and SMAD7 nor BMPR ligands, BMP2, BMP4, BMP6, and BMP7 were regulated by HNF-4α in HepG2 cells. BMPR1A, but not BMPR1B, BMPR2, ActR2A, ActR2B, or HJV, was decreased by HNF-4α, and HNF4α-knockdown-induced stimulation of hepcidin could be entirely blocked when BMPR1A was interfered with at the same time. In conclusion, the present study suggests that HNF-4α has a suppressive effect on hepcidin expression by inactivating the BMP pathway, specifically via BMPR1A, in HepG2 cells.  相似文献   

16.
The Tilapia collagen peptide mixture TY001 has been shown to accelerate wound healing in streptozotocin-induced diabetic mice and to protect against streptozotocin-induced inflammation and elevation in blood glucose. The goals of the present study are to further study TY001 effects on lipopolysaccharide (LPS)-induced inflammation and metabolic syndrome. LPS is known to disrupt circadian clock to produce toxic effects, the effects of TY001 on rhythmic alterations of serum cytokines and hepatic clock gene expressions were examined. Mice were given TY001 (30 g/L, ≈ 40 g/kg) through the drinking water for 30 days, and on the 21st day of TY001 supplementation, LPS (0.25 mg/kg, ip, daily) was given for 9 days to establish the inflammation model. Repeated LPS injections produced inflammation, impaired glucose metabolism, and suppressed the expression of circadian clock core genes Bmal1 and Clock; clock feedback gene Cry1, Cry2, Per1, and Per2; clock target gene Rev-erbα and RORα. TY001 prevented LPS-induced elevations of TNFα, IL-1β, IL-6, and IL-10 in the liver, along with improved histopathology. TY001 reduced LPS-elevated fasting blood glucose and increased LPS-reduced serum insulin levels, probably via increased glucose transporter GLUT2, enhanced insulin signaling p-Akt and p-IRS-1Try612. Importantly, LPS-induced circadian elevations of serum TNFα and IL-1β and aberrant expression of circadian clock genes in the liver were ameliorated by TY001. Immunohistochemistry revealed that the LPS decreased Bmal1 and Clock protein in the liver, which was recovered by TY001. Taken together, TY001 is effective against LPS-induced inflammation, disruption of glucose metabolism and disruption of circadian clock gene expressions.

Abbreviations: TY001: Tilapia collagen peptide mixture; LPS: Lipopolysaccharide; TNFα: Tumor necrosis factor-α; IL-1β: Interleukin-1β; GLUT2: Glucose transporter 2  相似文献   


17.
18.
The epithelial‐mesenchymal transition (EMT) is involved in many different types of cellular behavior, including liver fibrosis. In this report, we studied a novel function of RAR‐related orphan receptor gamma (ROR‐γ) in hepatocyte EMT during liver fibrosis. To induce EMT in vitro, primary hepatocytes and FL83B cells were treated with TGF‐β1. Expression of ROR‐γ was analyzed by Western blot in the fibrotic mouse livers and human livers with cirrhosis. To verify the role of ROR‐γ in hepatocyte EMT, we silenced ROR‐γ in FL83B cells using a lentiviral short hairpin RNA (shRNA) vector. The therapeutic effect of ROR‐γ silencing was investigated in a mouse model of TAA‐induced fibrosis by hydrodynamic injection of plasmids. ROR‐γ expression was elevated in hepatocyte cells treated with TGF‐β1, and ROR‐γ protein levels were elevated in the fibrotic mouse livers and human livers with cirrhosis. Knockdown of ROR‐γ resulted in the attenuation of TGF‐β1‐induced EMT in hepatocytes. Strikingly, ROR‐γ bound to ROR‐specific DNA response elements (ROREs) in the promoter region of TGF‐β type I receptor (Tgfbr1) and Smad2, resulting in the downregulation of Tgfbr1 and Smad2 after silencing of ROR‐γ. Therapeutic delivery of shRNA against ROR‐γ attenuated hepatocyte EMT and ameliorated liver fibrosis in a mouse model of TAA‐induced liver fibrosis. Overall, our results suggest that ROR‐γ regulates TGF‐β‐induced EMT in hepatocytes during liver fibrosis. We suggest that ROR‐γ may become a potential therapeutic target in treating liver fibrosis. J. Cell. Biochem. 118: 2026–2036, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号