首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Podosome-type adhesions are actin-based membrane protrusions involved in cell-matrix adhesion and extracellular matrix degradation. Despite growing knowledge of many proteins associated with podosome-type adhesions, much remains unknown concerning the function of podosomal proteins at the level of the whole animal. In this study, the spontaneous mouse mutant nee was used to identify a component of podosome-type adhesions that is essential for normal postnatal growth and development. Mice homozygous for the nee allele exhibited runted growth, craniofacial and skeletal abnormalities, ocular anterior segment dysgenesis, and hearing impairment. Adults also exhibited infertility and a form of lipodystrophy. Using genetic mapping and DNA sequencing, the cause of nee phenotypes was identified as a 1-bp deletion within the Sh3pxd2b gene on mouse Chromosome 11. Whereas the wild-type Sh3pxd2b gene is predicted to encode a protein with one PX domain and four SH3 domains, the nee mutation is predicted to cause a frameshift and a protein truncation altering a portion of the third SH3 domain and deleting all of the fourth SH3 domain. The SH3PXD2B protein is believed to be an important component of podosomes likely to mediate protein-protein interactions with membrane-spanning metalloproteinases. Testing this directly, SH3PXD2B localized to podosomes in constitutively active Src-transfected fibroblasts and through its last SH3 domain associated with a transmembrane member of a disintegrin and metalloproteinase family of proteins, ADAM15. These results identify SH3PXD2B as a podosomal-adaptor protein required for postnatal growth and development, particularly within physiologic contexts involving extracellular matrix regulation.  相似文献   

2.
3.
Inflammation of the middle ear cavity (otitis media) and the abnormal deposition of bone at the otic capsule are common causes of conductive hearing impairment in children and adults. Although a host of environmental factors can contribute to these conditions, a genetic predisposition has an important role as well. Here, we analyze the Tail-short (Ts) mouse, which harbors a spontaneous semi-dominant mutation that causes skeletal defects and hearing loss. By genetic means, we show that the Ts phenotypes arise from an 18-kb deletion/insertion of the Rpl38 gene, encoding a ribosomal protein of the large subunit. We show that Ts mutants exhibit significantly elevated auditory-brain stem response thresholds and reduced distortion-product otoacoustic emissions, in the presence of normal endocochlear potentials and typical inner ear histology suggestive of a conductive hearing impairment. We locate the cause of the hearing impairment to the middle ear, demonstrating over-ossification at the round window ridge, ectopic deposition of cholesterol crystals in the middle ear cavity, enlarged Eustachian tube, and chronic otitis media with effusion all beginning at around 3 weeks after birth. Using specific antisera, we demonstrate that Rpl38 is an ~8-kDa protein that is predominantly expressed in mature erythrocytes. Finally, using an Rpl38 cDNA transgene, we rescue the Ts phenotypes. Together, these data present a previously uncharacterized combination of interrelated middle ear pathologies and suggest Rpl38 deficiency as a model to dissect the causative relationships between neo-ossification, cholesterol crystal deposition, and Eustachian tubes in the etiology of otitis media.  相似文献   

4.
Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1tm1a /tm1a) mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute''s Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1tm1a /tm1a mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1tm1a /tm1a mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1tm1a /tm1a mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.  相似文献   

5.
目的:观察地氯雷他定联合地塞米松鼓室内注射治疗分泌性中耳炎的效果及对咽鼓管功能的影响。方法:选择我院2013年6月-2014年6月收治的分泌性中耳炎患者116例,随机分为两组,对照组采用地塞米松鼓室内注射治疗,观察组在此基础上加服地氯雷他定。观察并比较两组临床疗效及咽鼓管功能的恢复情况。结果:治疗后,两组咽鼓管功能不良率较治疗前明显降低(P0.05),观察组咽鼓管功能恢复率高于对照组,观察组治疗前后气骨导差差值明显大于对照组(P0.05),观察组在治疗后1周及1月的总有效率均高于对照组(P0.05)。结论:地氯雷他定联合地塞米松鼓室内注射可减少渗出和中耳积液潴留,有效改善分泌性中耳炎患者的咽鼓管功能,促进听力恢复。  相似文献   

6.
The proto-oncogene c-myc has a central role in multiple processes important for embryonic development, including cell proliferation, growth, apoptosis, and differentiation. We have investigated the role of c-myc in neural crest by using Wnt1-Cre-mediated deletion of a conditional mutation of the c-myc gene. c-myc deficiency in neural crest resulted in viable adult mice that have defects in coat color, skull frontal bone, and middle ear ossicle development. Physiological hearing studies demonstrated a significant hearing deficit in the mutant mice. In this report, we focus on the craniofacial and hearing defects. To further examine neural crest cells affected by c-myc deficiency, we fate mapped Wnt1-Cre expressing neural crest cells using the ROSA26 Cre reporter transgene. The phenotype obtained demonstrates the critical role that c-myc has in neural crest during craniofacial development as well as in providing a model for examining human congenital skull defects and deafness.  相似文献   

7.
To investigate the effects of knocking out the Sperm associated antigen6 (Spag6) gene on the auditory system of mice, the heterozygous type Spag6 knockout mouse model built in the previous period was used for mating and breeding, and homozygous type Spag6 gene knockout mouse (Spag−/−), heterozygous type Spag6 gene knockout mouse (Spag+/−) and wild type mouse (Spag+/+) were obtained. PCR technology was used to verify mouse models with different genotypes. After verification, the hearing threshold responses of Spag+/+ and Spag−/− genotype mice were detected. The localization of Spag6 gene in the basal membrane of the cochlea of the inner ear was detected by immunofluorescence staining. The changes of middle ear tissues were observed by H.E. staining sections. The relative expression of Prestin gene and Pgrn gene in different age mice was detected by fluorescence quantitative PCR. The relative expression of Prestin gene was detected by western blot. The results showed that Spag−/− mice had hearing impairment compared with Spag+/+ mice. And Spag6 protein is distributed in different genotypes of mouse hair cells; Spag−/− mice showed otitis media. The expression of Prestin mRNA and protein in Spag−/− mice was significantly higher than that in Spag+/+ mice (P < 0.01). The expression of Pgrn gene in Spag+/+ mice was significantly higher than that in Spag−/− mice (P < 0.05). It indicates that the loss of Spag6 gene would lead to the decline of hearing sense in mice. It is likely that the Spag6 gene could affect hearing by regulating the expression of Prestin gene. And the absence of the Spag6 gene causes otitis media in mice. The results of this study can lay a theoretical foundation for the follow-up studies of Spag6 gene in deafness diseases.  相似文献   

8.
Random chemical mutagenesis of the mouse genome can causally connect genes to specific phenotypes. Using this approach, reduced pinna (rep) or microtia, a defect in ear development, was mapped to a small region of mouse chromosome 2. Sequencing of this region established co-segregation of the phenotype (rep) with a mutation in the Prkra gene, which encodes the protein PACT/RAX. Mice homozygous for the mutant Prkra allele had defects not only in ear development but also growth, craniofacial development and ovarian structure. The rep mutation was identified as a missense mutation (Serine 130 to Proline) that did not affect mRNA expression, however the steady state level of RAX protein was significantly lower in the brains of rep mice. The mutant protein, while normal in most biochemical functions, was unable to bind dsRNA. In addition, rep mice displayed altered morphology of the skull that was consistent with a targeted deletion of Prkra showing a contribution of the gene to craniofacial development. These observations identified a specific mutation that reduces steady-state levels of RAX protein and disrupts the dsRNA binding function of the protein, demonstrating the importance of the Prkra gene in various aspects of mouse development.  相似文献   

9.
摘要 目的:探讨耳内镜下鼓室成形术(TUO)治疗慢性化脓性中耳炎鼓膜穿孔的疗效,并分析影响听力恢复的相关因素。方法:回顾性分析2020年3月~2022年3月期间在邯郸市第一医院接受治疗的218例慢性化脓性中耳炎鼓膜穿孔患者的临床资料。根据手术方式的不同将患者分为A组(n=108,接受传统手术治疗)和B组(n=110,接受TUO治疗)。对比两组疗效、听力恢复情况和并发症发生率。收集B组患者的临床资料,采用多因素Logistic回归模型分析影响听力恢复的相关因素。结果:B组的临床总有效率高于A组(P<0.05)。两组术后6个月气骨导差、骨导听阈、气导听阈下降,且B组低于A组(P<0.05)。两组并发症总发生率组间对比未见差异(P>0.05)。根据听力恢复情况分为良好组(n=75)和不良组(n=35)。单因素分析结果显示,听力恢复与咽鼓管、镫骨情况、鼓室黏膜、人工听骨材料、鼓膜张肌腱、听骨链有关(P<0.05)。多因素Logistic回归模型结果显示:听骨链病变、镫骨仅剩底板、咽鼓管不通畅、人工听骨材料为生物陶瓷、无鼓膜张肌腱是听力恢复的独立危险因素(P<0.05)。结论:TUO治疗慢性化脓性中耳炎鼓膜穿孔,可提高临床治疗效果,改善听力。听骨链病变、镫骨仅剩底板、咽鼓管不通、人工听骨材料为生物陶瓷、无鼓膜张肌腱为听力恢复的危险因素。  相似文献   

10.
11.
Mutant mice with abnormalities are potentially useful as models for studying human defects. Here we report a group of mice with abnormal behavioral patterns. A new spontaneous mutant mouse exhibited hyperactive behavior at about seven days of age, followed by tight circling behavior. Breeding studies suggest that this mutation is caused by a single gene defect inherited in an autosomal recessive manner. Consequently, this mutation is referred to as a circling (cir) mouse mutation with the gene symbol cir. Auditory test results identified clearly the hearing loss of the cir, compared with wild-type mice. Pathologic studies confirmed developmental defects in cochlea and spiral ganglions that were correlated to the abnormal behavior observed in the cir mice. Thus, cir mice may be useful as a model for studying inner ear abnormalities and deafness in humans.  相似文献   

12.
The study of mouse hearing impairment mutants has led to the identification of a number of human hearing impairment genes and has greatly furthered our understanding of the physiology of hearing. The novel mouse mutant neurological/sensory 5 (nse5) demonstrates a significantly reduced or absent startle response to sound and is therefore a potential murine model of human hearing impairment. Genetic analysis of 500 intercross progeny localized the mutant locus to a 524 kilobase (kb) interval on mouse chromosome 15. A missense mutation in a highly-conserved amino acid was found in the asparagine-linked glycosylation 10B gene (Alg10b), which is within the critical interval for the nse5 mutation. A 20.4 kb transgene containing a wildtype copy of the Alg10b gene rescued the mutant phenotype in nse5/nse5 homozygous animals, confirming that the mutation in Alg10b is responsible for the nse5/nse5 mutant phenotype. Homozygous nse5/nse5 mutants had abnormal auditory brainstem responses (ABRs), distortion product otoacoustic emissions (DPOAEs), and cochlear microphonics (CMs). Endocochlear potentials (EPs), on the other hand, were normal. ABRs and DPOAEs also confirmed the rescue of the mutant nse5/nse5 phenotype by the wildtype Alg10b transgene. These results suggested a defect in the outer hair cells of mutant animals, which was confirmed by histologic analysis. This is the first report of mutation in a gene involved in the asparagine (N)-linked glycosylation pathway causing nonsyndromic hearing impairment, and it suggests that the hearing apparatus, and the outer hair cells in particular, are exquisitely sensitive to perturbations of the N-linked glycosylation pathway.  相似文献   

13.
14.
dreher is a spontaneous mouse mutation in which adult animals display a complex phenotype associated with hearing loss, neurological, pigmentation and skeletal abnormalities. During early embryogenesis, the neural tube of dreher mutants is abnormally shaped in the region of the rhomboencephalon, due to problems in the formation of a proper roof plate over the otic hindbrain. We have studied the expression of Hox/lacZ transgenic mouse strains in the dreher background and shown that primary segmentation of the neural tube is not altered in these mutants, although correct morphogenesis is affected resulting in misshapen rhombomeres. Neural crest derivatives from rhombomere 6, such as the glossopharyngeal ganglion, are defective, and the dorsal neural tube marker Wnt1 is absent from this segment. Selected trunk neural crest populations are also altered, as there is a lack of pigmentation in the thoracic region of mutant mice. Skeletal defects include abnormal cranial bones of neural crest origin, and improper fusion of the dorsal aspects of cervical and thoracic vertebrae. Taken together, the gene affected in the dreher mutant is responsible for correct patterning of the dorsal-most cell types of the neural tube, that is, the neural crest and the roof plate, in the hindbrain region. Axial skeletal defects could reflect inductive influence of the dorsal neural tube on proper fusion of the neural arches. It is possible that a common precursor population for both neural crest and roof plate is the cellular target of the dreher mutation.  相似文献   

15.
Abnormal craniofacial features of a transgenic mouse model of chondrodysplasia with a type II collagen mutation (Gly574Ser) are described in this report. In addition to a shortened mandible and cleft palate, a misshapen otic capsule was observed. Interestingly, hearing impairment is often a component of the chondrodysplasia phenotype that results from mutations in COL2A1. To identify a potential mechanism in the hearing loss associated with type II collagen mutations, we examined the development of the otic capsule in the transgenic mice. It appeared to be smaller overall, relative to the skull proportions, and rather than the normal rounded dimensions, the transgenic capsule was flattened and elongated. We speculate that the cartilage of the developing otic capsule was less able to resist the mechanical forces from the developing brain and other tissues within the cranium and thus became deformed under pressure. We further speculate that the hearing loss associated with the chondrodysplasia phenotype is at least partially due to these defects in the developing cartilage matrix of the otic capsule.  相似文献   

16.
Specification of digit number and identity is central to digit pattern in vertebrate limbs. The classical talpid(3) chicken mutant has many unpatterned digits together with defects in other regions, depending on hedgehog (Hh) signalling, and exhibits embryonic lethality. The talpid(3) chicken has a mutation in KIAA0586, which encodes a centrosomal protein required for the formation of primary cilia, which are sites of vertebrate Hh signalling. The highly conserved exons 11 and 12 of KIAA0586 are essential to rescue cilia in talpid(3) chicken mutants. We constitutively deleted these two exons to make a talpid3(-/-) mouse. Mutant mouse embryos lack primary cilia and, like talpid(3) chicken embryos, have face and neural tube defects but also defects in left/right asymmetry. Conditional deletion in mouse limb mesenchyme results in polydactyly and in brachydactyly and a failure of subperisoteal bone formation, defects that are attributable to abnormal sonic hedgehog and Indian hedgehog signalling, respectively. Like talpid(3) chicken limbs, the mutant mouse limbs are syndactylous with uneven digit spacing as reflected in altered Raldh2 expression, which is normally associated with interdigital mesenchyme. Both mouse and chicken mutant limb buds are broad and short. talpid3(-/-) mouse cells migrate more slowly than wild-type mouse cells, a change in cell behaviour that possibly contributes to altered limb bud morphogenesis. This genetic mouse model will facilitate further conditional approaches, epistatic experiments and open up investigation into the function of the novel talpid3 gene using the many resources available for mice.  相似文献   

17.
Chemical mutagenesis followed by screening for abnormal phenotypes in the mouse holds much promise as a method for revealing gene function. This method is particularly well-suited for discovering genes involved in hearing or balance function, as these defects are relatively easy to screen for in the mouse. We report here the inner ear abnormalities and genetic localization of seven new dominant mutations created by ENU mutagenesis. All seven mutant stocks were identified because of circling and/or head-weaving behavior, which is an indication of balance dysfunction. Investigation of the inner ears of the seven mutant stocks revealed very similar lateral and posterior semicircular canal defects. Studies of the development of the canals in one mutant stocks revealed that the affected canals showed reduced outgrowth and delayed canal fusion. Physiological studies performed in one mutant stock showed raised average compound-action-potential thresholds of approximately 10–20 dB sound pressure level (SPL) (depending on frequency), indicating a mild hearing impairment, although scanning electron microscopy performed in several of the mutant stocks revealed no obvious structural defects in the organ of Corti. All seven mutations mapped to the proximal portion of Chromosome (Chr) 4, near the centromere. On the basis of their similar phenotype and map location, we suggest that the seven mutant genes may be allelic and represent a highly mutable locus on Chr 4 that may be particularly susceptible to ENU-induced mutation on the BALB/c genetic background.  相似文献   

18.
The mechanotransduction process in hair cells in the inner ear is associated with the influx of calcium from the endolymph. Calcium is exported back to the endolymph via the splice variant w/a of the PMCA2 of the stereocilia membrane. To further investigate the role of the pump, we have identified and characterized a novel ENU-induced mouse mutation, Tommy, in the PMCA2 gene. The mutation causes a non-conservative E629K change in the second intracellular loop of the pump that harbors the active site. Tommy mice show profound hearing impairment from P18, with significant differences in hearing thresholds between wild type and heterozygotes. Expression of mutant PMCA2 in CHO cells shows calcium extrusion impairment; specifically, the long term, non-stimulated calcium extrusion activity of the pump is inhibited. Calcium extrusion was investigated directly in neonatal organotypic cultures of the utricle sensory epithelium in Tommy mice. Confocal imaging combined with flash photolysis of caged calcium showed impairment of calcium export in both Tommy heterozygotes and homozygotes. Immunofluorescence studies of the organ of Corti in homozygous Tommy mice showed a progressive base to apex degeneration of hair cells after P40. Our results on the Tommy mutation along with previously observed interactions between cadherin-23 and PMCA2 mutations in mouse and humans underline the importance of maintaining the appropriate calcium concentrations in the endolymph to control the rigidity of cadherin and ensure the function of interstereocilia links, including tip links, of the stereocilia bundle.  相似文献   

19.
20.
Phenotypic and molecular genetic examinations of a transgenic mouse line showing developmental defects caused by a recessive insertional mutation were carried out. The mutant phenotype is characterized by general retardation of postnatal body growth and by the appearance of increased incisor length in the upper and lower jaw. The mutation causing the aberrant phenotype was mapped to Chromosome 13, 40 cM. Examination of the expression of the candidate genes did not show any alterations. This mutant mouse line provides a reproducible model for the identification and examination of gene(s) involved in growth and in the craniofacial development, including that of the jaws and teeth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号