首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chappell JM  Iqbal A  Abbott D 《PloS one》2012,7(5):e36404
The N-player quantum games are analyzed that use an Einstein-Podolsky-Rosen (EPR) experiment, as the underlying physical setup. In this setup, a player's strategies are not unitary transformations as in alternate quantum game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players' strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for N-qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the players' payoffs and mixed Nash equilibrium are determined. Players' N x N payoff matrices are then defined using linear functions so that common two-player games can be easily extended to the N-player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners' Dilemma game for general N ≥ 2. We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs. By dispensing with the standard unitary transformations on state vectors in Hilbert space and using instead rotors and multivectors, based on Clifford's geometric algebra (GA), it is shown how the N-player case becomes tractable. The new mathematical approach presented here has wide implications in the areas of quantum information and quantum complexity, as it opens up a powerful way to tractably analyze N-partite qubit interactions.  相似文献   

2.
Chappell JM  Iqbal A  Abbott D 《PloS one》2012,7(1):e29015
The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of geometric algebra (GA). The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist.  相似文献   

3.
An evolutionary game of individuals cooperating to obtain a collective benefit is here modelled as an n-player Prisoner's Dilemma game. With reference to biological situations, such as group foraging, we introduce a threshold condition in the number of cooperators required to obtain the collective benefit. In the simplest version, a three-player game, complex behaviour appears as the replicator dynamics exhibits a catastrophic event separating a parameter region allowing for coexistence of cooperators and defectors and a region of pure defection. Cooperation emerges through an ESS bifurcation, and cooperators only thrive beyond a critical point in cost-benefit space. Moreover, a repelling fixed point of the dynamics acts as a barrier to the introduction of cooperation in defecting populations. The results illustrate the qualitative difference between two-player games and multiple player games and thus the limitations to the generality of conclusions from two-player games. We present a procedure to find the evolutionarily stable strategies in any n-player game with cost and benefit depending on the number of cooperators. This was previously done by Motro [1991. Co-operation and defection: playing the field and the ESS. J. Theor. Biol. 151, 145-154] in the special cases of convex and concave benefit functions and constant cost.  相似文献   

4.
Previous work has demonstrated that for games defined by differential or difference equations with a continuum of strategies, there exists a G-function, related to individual fitness, that must take on a maximum with respect to a virtual variable v whenever v is one of the vectors in the coalition of vectors which make up the evolutionarily stable strategy (ESS). This result, called the ESS maximum principle, is quite useful in determining candidates for an ESS. This principle is reformulated here, so that it may be conveniently applied to matrix games. In particular, we define a matrix game to be one in which fitness is expressed in terms of strategy frequencies and a matrix of expected payoffs. It is shown that the G-function in the matrix game setting must again take on a maximum value at all the strategies which make up the ESS coalition vector. The reformulated maximum principle is applicable to both bilinear and nonlinear matrix games. One advantage in employing this principle to solve the traditional bilinear matrix game is that the same G-function is used to find both pure and mixed strategy solutions by simply specifying an appropriate strategy space. Furthermore we show how the theory may be used to solve matrix games which are not in the usual bilinear form. We examine in detail two nonlinear matrix games: the game between relatives and the sex ratio game. In both of these games an ESS solution is determined. These examples not only illustrate the usefulness of this approach to finding solutions to an expanded class of matrix games, but aids in understanding the nature of the ESS as well.  相似文献   

5.
Animal behavior and evolution can often be described by game-theoretic models. Although in many situations the number of players is very large, their strategic interactions are usually decomposed into a sum of two-player games. Only recently were evolutionarily stable strategies defined for multi-player games and their properties analyzed [Broom, M., Cannings, C., Vickers, G.T., 1997. Multi-player matrix games. Bull. Math. Biol. 59, 931–952]. Here we study the long-run behavior of stochastic dynamics of populations of randomly matched individuals playing symmetric three-player games. We analyze the stochastic stability of equilibria in games with multiple evolutionarily stable strategies. We also show that, in some games, a population may not evolve in the long run to an evolutionarily stable equilibrium.  相似文献   

6.
Recently, the authors proposed a quantum prisoner’s dilemma game based on the spatial game of Nowak and May, and showed that the game can be played classically. By using this idea, we proposed three generalized prisoner’s dilemma (GPD, for short) games based on the weak Prisoner’s dilemma game, the full prisoner’s dilemma game and the normalized Prisoner’s dilemma game, written by GPDW, GPDF and GPDN respectively. Our games consist of two players, each of which has three strategies: cooperator (C), defector (D) and super cooperator (denoted by Q), and have a parameter γ to measure the entangled relationship between the two players. We found that our generalised prisoner’s dilemma games have new Nash equilibrium principles, that entanglement is the principle of emergence and convergence (i.e., guaranteed emergence) of super cooperation in evolutions of our generalised prisoner’s dilemma games on scale-free networks, that entanglement provides a threshold for a phase transition of super cooperation in evolutions of our generalised prisoner’s dilemma games on scale-free networks, that the role of heterogeneity of the scale-free networks in cooperations and super cooperations is very limited, and that well-defined structures of scale-free networks allow coexistence of cooperators and super cooperators in the evolutions of the weak version of our generalised prisoner’s dilemma games.  相似文献   

7.
In this article, we present a game theory based framework, named games network, for modeling biological interactions. After introducing the theory, we more precisely describe the methodology to model biological interactions. Then we apply it to the plasminogen activator system (PAs) which is a signal transduction pathway involved in cancer cell migration. The games network theory extends game theory by including the locality of interactions. Each game in a games network represents local interactions between biological agents. The PAs system is implicated in cytoskeleton modifications via regulation of actin and microtubules, which in turn favors cell migration. The games network model has enabled us a better understanding of the regulation involved in the PAs system.  相似文献   

8.
Selten (1980, J. theor. Biol. 84, 93(N)/01) has shown that mixed strategies cannot be evolutionarily stable in asymmetric games. Because every interaction features some asymmetry, this result apparently precludes mixed strategies in an evolutionary setting. In Maynard Smith's Hawk-Dove game (1982, Evolution and the theory of games (UP-Cambridge), for example, Selten's result restricts attention to pure-strategy evolutionarily stable outcomes in which the animals use the ability to condition their actions on asymmetries to coordinate, with one playing Hawk and one playing Dove, and with conflicts in which both animals play Hawk never arising. This result contrasts with the intuition that the mixed equilibrium of the Hawk-Dove game captures important aspects of many animal interactions, including the possibility of conflict. In this paper, we follow Eshel and Sansone (1995, J. theor. Biol. 177, 341-356) in enriching Selten's model to incorporate an important aspect of animal interactions, namely that payoffs and asymmetries may both be imperfectly observed. In the richer model, we find conditions under which effectively mixed strategies are stable in asymmetric games, as well as conditions under which they are not stable. Behavior will be conditioned on asymmetries, leading to pure-strategy equilibria in which conflict is avoided, when there are relatively large, observable asymmetries and small observable variations in payoffs. Under opposite conditions, evolutionarily stable equilibria will appear that are effectively mixed, including the potential for conflict.  相似文献   

9.
Evolutionary game theory is a basis of replicator systems and has applications ranging from animal behavior and human language to ecosystems and other hierarchical network systems. Most studies in evolutionary game dynamics have focused on a single game, but, in many situations, we see that many games are played simultaneously. We construct a replicator equation with plural games by assuming that a reward of a player is a simple summation of the reward of each game. Even if the numbers of the strategies of the games are different, its dynamics can be described in one replicator equation. We here show that when players play several games at the same time, the fate of a single game cannot be determined without knowing the structures of the whole other games. The most absorbing fact is that even if a single game has a ESS (evolutionary stable strategy), the relative frequencies of strategies in the game does not always converge to the ESS point when other games are played simultaneously.  相似文献   

10.
The prisoner's dilemma (PD) and the snowdrift (SD) games are paradigmatic tools to investigate the origin of cooperation. Whereas spatial structure (e.g. nonrandom spatial distribution of strategies) present in the spatially explicit models facilitates the emergence of cooperation in the PD game, recent investigations have suggested that spatial structure can be unfavourable for cooperation in the SD game. The frequency of cooperators in a spatially explicit SD game can be lower than it would be in an infinitely large well-mixed population. However, the source of this effect cannot be identified with certainty as spatially explicit games differ from well-mixed games in two aspects: (i) they introduce spatial correlations, (ii) and limited neighbourhood. Here we extend earlier investigations to identify the source of this effect, and thus accordingly we study a spatially explicit version of the PD and SD games with varying degrees of dispersal and neighbourhood size. It was found that dispersal favours selfish individuals in both games. We calculated the frequency of cooperators at strong dispersal limit, which in concordance with the numerical results shows that it is the short range of interactions (i.e. limited neighbourhood) and not spatial correlations that decreases the frequency of cooperators in spatially explicit models of populations. Our results demonstrate that spatial correlations are always beneficial to cooperators in both the PD and SD games. We explain the opposite effect of dispersal and neighbourhood structure, and discuss the relevance of distinguishing the two effects in general.  相似文献   

11.
Harrison F  El Mouden C 《PloS one》2011,6(11):e27623
In recent years, significant advances have been made in understanding the adaptive (ultimate) and mechanistic (proximate) explanations for the evolution and maintenance of cooperation. Studies of cooperative behaviour in humans invariably use economic games. These games have provided important insights into the mechanisms that maintain economic and social cooperation in our species. However, they usually rely on the division of monetary tokens which are given to participants by the investigator. The extent to which behaviour in such games may reflect behaviour in the real world of biological markets--where money must be earned and behavioural strategies incur real costs and benefits--is unclear. To provide new data on the potential scale of this problem, we investigated whether people behaved differently in two standard economic games (public goods game and dictator game) when they had to earn their monetary endowments through the completion of dull or physically demanding tasks, as compared with simply being given the endowment. The requirement for endowments to be 'earned' through labour did not affect behaviour in the dictator game. However, the requirement to complete a dull task reduced cooperation in the public goods game among the subset of participants who were not familiar with game theory. There has been some effort to test whether the conclusions drawn from standard, token-based cooperation games adequately reflect cooperative behaviour 'in the wild.' However, given the almost total reliance on such games to study cooperation, more exploration of this issue would be welcome. Our data are not unduly worrying, but they do suggest that further exploration is needed if we are to make general inferences about human behaviour from the results of structured economic games.  相似文献   

12.
Tanimoto J 《Bio Systems》2008,92(1):82-90
This paper reports an intelligent agent equipped with two-layer finite state machines (FSMs) that can communicate by turning lighting on and off, leading to social cooperation that solves the dilemma situation, modeled by a one-shot 2x2 game. This communication between two gaming agents can be observed in hero- and leader-type dilemma games, where alternating reciprocity, repeating cooperation (C)-defeat (D) after D-C, is the equal pareto optimum instead of a sequence of mutual cooperation that is the equal pareto optimum for a prisoner's dilemma (PD) game.  相似文献   

13.
The Traveler''s Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler''s Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games.  相似文献   

14.
Tanimoto J  Sagara H 《Bio Systems》2007,90(3):728-737
It is recognized that bilateral cooperation (C), a reward-state in other words, emergently comes up in a 2 × 2 prisoner's dilemma game, if you assume a strategy set with a memory concept. Also observed is a mixture state of cooperation (C) and defect (D), saint- and temptation-state in other words, to obtain a higher payoff than R (R reciprocity) in a hero or leader game that is a chicken-type dilemma game; this phenomenon is called alternating reciprocity (AR) or ST reciprocity. Observing a holistic 2 × 2 game world including trivial games and various dilemma games, where 2-length memory and infinite interactions are assumed, the paper reports on the specific mechanism of AR. It is observed there are three different phases relating to AR, which can be explained by the stress of the dilemma.  相似文献   

15.
In this paper we are concerned with how aggregated outcomes of individual behaviours, during interactions with other individuals (games) or with environmental factors, determine the vital rates constituting the growth rate of the population. This approach needs additional elements, namely the rates of event occurrence (interaction rates). Interaction rates describe the distribution of the interaction events in time, which seriously affects the population dynamics, as is shown in this paper. This leads to the model of a population of individuals playing different games, where focal game affected by the considered trait can be extracted from the general model, and the impact on the dynamics of other events (which is not neutral) can be described by an average background fertility and mortality. This leads to a distinction between two types of background fitness, strategically neutral elements of the focal games (correlated with the focal game events) and the aggregated outcomes of other interactions (independent of the focal game). The new approach is useful for clarification of the biological meaning of concepts such as weak selection. Results are illustrated by a Hawk–Dove example.  相似文献   

16.
When engaged in behavioural games, animals can adjust their use of alternative tactics until groups reach stable equilibria. Recent theory on behavioural plasticity in games predicts that individuals should differ in their plasticity or responsiveness and hence in their degree of behavioural adjustment. Moreover, individuals are predicted to be consistent in their plasticity within and across biological contexts. These predictions have yet to be tested empirically and so we examine the behavioural adjustment of individual nutmeg mannikins (Lonchura punctulata), gregarious ground-feeding passerines, when playing two different social foraging games: producer-scrounger (PS) and patch-choice (PC) games. We found: (i) significant individual differences in plasticity and sampling behaviour in each of the two games, (ii) individual differences in sampling behaviour were consistent over different test conditions within a game (PC) and over a six month period (PS), (iii) but neither individual plasticity nor sampling behaviour was correlated from one social foraging game to another. The rate at which birds sampled alternative tactics was positively associated with seed intake in PS trials but negatively associated in PC trials. These results suggest that games with frequency dependence of pay-offs can maintain differences in behavioural plasticity but that an important component of this plasticity is group- and/or context-specific.  相似文献   

17.
Understanding human institutions, animal cultures and other social systems requires flexible formalisms that describe how their members change them from within. We introduce a framework for modelling how agents change the games they participate in. We contrast this between-game ‘institutional evolution’ with the more familiar within-game ‘behavioural evolution’. We model institutional change by following small numbers of persistent agents as they select and play a changing series of games. Starting from an initial game, a group of agents trace trajectories through game space by navigating to increasingly preferable games until they converge on ‘attractor’ games. Agents use their ‘institutional preferences'' for game features (such as stability, fairness and efficiency) to choose between neighbouring games. We use this framework to pose a pressing question: what kinds of games does institutional evolution select for; what is in the attractors? After computing institutional change trajectories over the two-player space, we find that attractors have disproportionately fair outcomes, even though the agents who produce them are strictly self-interested and indifferent to fairness. This seems to occur because game fairness co-occurs with the self-serving features these agents do actually prefer. We thus present institutional evolution as a mechanism for encouraging the spontaneous emergence of cooperation among small groups of inherently selfish agents, without space, reputation, repetition, or other more familiar mechanisms. Game space trajectories provide a flexible, testable formalism for modelling the interdependencies of behavioural and institutional evolutionary processes, as well as a mechanism for the evolution of cooperation.  相似文献   

18.
We compare COVID-19 case loads and mortality across counties that hosted more versus fewer NHL hockey games, NBA basketball games, and NCAA basketball games during the early months of 2020, before any large outbreaks were identified. We find that hosting one additional NHL/NBA game in March 2020 leads to an additional 7520 cases and 658 deaths. Similarly, we find that hosting an additional NCAA Division 1 men's basketball game in March 2020 results in an additional 34 deaths. Back-of-the-envelope calculations suggest that the per-game fatality costs were 200–300 times greater than per-game spending.  相似文献   

19.
Despite hundreds of studies on the Prisoner's Dilemma (PD) game, understanding about network reciprocity remains a unsolved puzzle. Thus, we performed a series of Full Factorial Design of Experiments (FFDOE) to evaluate what dominates emerging cooperation in the PD game on various networks. The results qualitatively reveal the influence of each factor and show that some combinations of factors have complicated interactions. Remarkably, the choice of strategy update rule or update dynamics is much more important than the type of network imposed or, at least, the factorial effect of the average degree of the network reported by Nowak (Science 314, 5805, 1560-1563, 2006) and Ohtsuki et al. (Nature 441, 502-505, 2006). Furthermore, the decision of which PD game type to investigate (whether all PD games, PD-Chicken boundary games or Donor & Recipient games) is important for discussing network reciprocity.  相似文献   

20.
The Wii Fit? is a form of interactive gaming designed to elicit health and fitness benefits to replace sedentary gaming. This study was designed to determine the effectiveness of Wii Fit? fitness games. The purpose of the study was to determine the %VO2max and energy expenditure from different Wii Fit? games at different levels including the step and hula games. Eight healthy young women completed a preliminary trial to determine VO2max and later played the Wii Fit? during 2 separate counterbalanced trials. During each session, subjects played levels of Wii Fit? games for 10 minutes each level. One session involved beginning and intermediate hula, and the other session involved beginning and intermediate steps. The VO2 was measured continuously via metabolic cart, and rating of perceived exertion (RPE) was assessed at the end of each game level. The lowest %VO2max, kcal·min, and RPE occurred during the beginning step game and the highest values occurred during the intermediate hula game. Respiratory exchange ratio was significantly higher in the intermediate hula than beginning hula game but was not significantly different between step game levels. The intermediate hula and step games produced the greatest energy expenditure with an equivalent effect of a walking speed of >5.63 km·h (>3.5 miles·h). This is the first study to determine the percentage of VO2max and caloric expenditure elicited by different Wii Fit? video games at different game levels in adults. Findings suggest that the Wii Fit? can be used as an effective activity for promoting physical health in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号