首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber-PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum.  相似文献   

2.
It is known from the experimental data that at different cerebellar neurons there are voltage-dependent Ca2+ channels, NMDA receptors, metabotropic glutamate and GABAB receptors. This receptor arrangement ensures that activation of excitatory and inhibitory input results in changes in activity of protein kinases and phosphatases and subsequent modification of synaptic efficacy. The mechanism of synaptic plasticity is advanced that in accordance with the known experimental data concerning the modification of excitatory and inhibitory inputs to Purkinje cells, granule cells, and deep cerebellar nuclei cells. The mechanism is based on a postulate that phosphorylation/dephosphorylation of AMPA (GABAA) receptors on cerebellar cells causes the LTP/LTD of excitatory (LTD/LTP of inhibitory) transmission. It is assumed that modification rules for Purkinje cells, granule cells, and deep cerebellar nuclei cells, wherein cGMP-dependent protein kinase G is involved in synaptic plasticity, are distinct from those of hippocampal/neocortical cells, wherein cAMP-dependent protein kinase A is involved in synaptic plasticity, since cGMP (cAMP) concentration decreases (increases) with Ca2+ rise.  相似文献   

3.
The model of simultaneous interrelated modification in the efficacy of synaptic inputs to different neurons of the olivary-cerebellar network is developed. The model is based on the following features of the network: simultaneous activation of the input layer (granule) cells and the output layer (deep cerebellar nuclei) cells by mossy fibers; simultaneous activation of Purkinje cells and cerebellar cells of the input and output layers by climbing fibers and their collaterals; the existence of local feedback excitatory, inhibitory, and disinhibitory circuits. The rise (decrease) of posttetanic Ca2+ concentration in reference to the level produced by previous stimulation causes the decrease (increase) in cGMP-dependent protein kinase G activity, and increase (decrease) inprotein phosphatase 1 activity. Subsequent dephosphorylation (phosphorylation) of ionotropic receptors results in simultaneous LTD (LTP) of the excitatory input together with the LTP (LTD) of the inhibitory input to the same neuron. The character of interrelated modifications of synapses at different cerebellar levels strongly depends on the olivary cell activity. In the presence (absence) of the signal from the inferior olive LTD (LTP) of the output cerebellar signal can be induced.  相似文献   

4.
We use a mathematical model to investigate how climbing fiber-dependent plasticity at granule cell to Purkinje cell (grPkj) synapses in the cerebellar cortex is influenced by the synaptic organization of the cerebellar-olivary system. Based on empirical studies, grPkj synapses are assumed to decrease in strength when active during a climbing fiber input (LTD) and increase in strength when active without a climbing fiber input (LTP). Results suggest that the inhibition of climbing fibers by cerebellar output combines with LTD/P to self-regulate spontaneous climbing fiber activity to an equilibrium level at which LTP and LTD balance and the expected net change in grPkj synaptic weights is zero. The synaptic weight vector is asymptotically confined to an equilibrium hyperplane defining the set of all possible combinations of synaptic weights consistent with climbing fiber equilibrium. Results also suggest restrictions on LTP/D at grPkj synapses required to produce synaptic weights that do not drift spontaneously.  相似文献   

5.
In the cerebellar glomerulus, GABAergic synapses formed by Golgi cells regulate excitatory transmission from mossy fibers to granule cells through feed-forward and feedback mechanisms. In acute cerebellar slices, we found that stimulating Golgi cell axons with a train of 10 impulses at 100 Hz transiently inhibited both the phasic and the tonic components of inhibitory responses recorded in granule cells. This effect was blocked by the GABA(B) receptor blocker CGP35348, and could be mimicked by bath-application of baclofen (30 μM). This depression of IPSCs was prevented when granule cells were dialyzed with GDPβS. Furthermore, when synaptic transmission was blocked, GABA(A) currents induced in granule cells by localized muscimol application were inhibited by the GABA(B) receptor agonist baclofen. These findings indicate that postsynaptic GABA(B) receptors are primarily responsible for the depression of IPSCs. This inhibition of inhibitory events results in an unexpected excitatory action by Golgi cells on granule cell targets. The reduction of Golgi cell-mediated inhibition in the cerebellar glomerulus may represent a regulatory mechanism to shift the balance between excitation and inhibition in the glomerulus during cerebellar information processing.  相似文献   

6.
Long-term potentiation (LTP) and long-term depression (LTD) are widely accepted to be synaptic mechanisms involved in learning and memory. It remains uncertain, however, which particular activity rules are utilized by hippocampal neurons to induce LTP and LTD in behaving animals. Recent experiments in the dentate gyrus of freely moving rats revealed an unexpected pattern of LTP and LTD from high-frequency perforant path stimulation. While 400 Hz theta-burst stimulation (400-TBS) and 400 Hz delta-burst stimulation (400-DBS) elicited substantial LTP of the tetanized medial path input and, concurrently, LTD of the non-tetanized lateral path input, 100 Hz theta-burst stimulation (100-TBS, a normally efficient LTP protocol for in vitro preparations) produced only weak LTP and concurrent LTD. Here we show in a biophysically realistic compartmental granule cell model that this pattern of results can be accounted for by a voltage-based spike-timing-dependent plasticity (STDP) rule combined with a relatively fast Bienenstock-Cooper-Munro (BCM)-like homeostatic metaplasticity rule, all on a background of ongoing spontaneous activity in the input fibers. Our results suggest that, at least for dentate granule cells, the interplay of STDP-BCM plasticity rules and ongoing pre- and postsynaptic background activity determines not only the degree of input-specific LTP elicited by various plasticity-inducing protocols, but also the degree of associated LTD in neighboring non-tetanized inputs, as generated by the ongoing constitutive activity at these synapses.  相似文献   

7.
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.  相似文献   

8.
Neuromodulatory input, acting on G protein-coupled receptors, is essential for the induction of experience-dependent cortical plasticity. Here we report that G-coupled receptors in layer II/III of visual cortex control the polarity of synaptic plasticity through a pull-push regulation of LTP and LTD. In slices, receptors coupled to Gs promote LTP while suppressing LTD; conversely, receptors coupled to Gq11 promote LTD and suppress LTP. In vivo, the selective stimulation of Gs- or Gq11-coupled receptors brings the cortex into LTP-only or LTD-only states, which allows the potentiation or depression of targeted synapses with visual stimulation. The pull-push regulation of LTP/LTD occurs via direct control of the synaptic plasticity machinery and it is independent of changes in NMDAR activation or neuronal excitability. We propose these simple rules governing the pull-push control of LTP/LTD form a general metaplasticity mechanism that may contribute to neuromodulation of plasticity in other cortical circuits.  相似文献   

9.
Fetal cerebellar anlage from rat fetuses of 15-16 operational days were grafted into the anterior chamber of the eye of adult female albino rat recipients. Survival time of the transplants--containing both cerebellar cortex and cerebellar nuclei--was 2 to 2 1/2 months. Electron microscopical (EM) studies of the thin, under-developed granular layer of the laminated cerebellar cortex revealed the presence of well differentiated cerebellar glomeruli, surrounded by granule cell perikarya. As in the normal cerebellar cortex, the central profile of the glomerular complex was the large mossy terminal, containing spheroid synaptic vesicles, and forming synaptic contacts with dendrites and dendritic digits of the granule cells. Golgi cell axonal varicosities, containing ovoid or pleomorphic synaptic vesicles were found also on the periphery of the glomeruli. In addition, in several synaptic glomeruli, a third neuronal element was also observed, containing flat, discoidal vesicles and receiving synaptic contacts from mossy and Golgi axons, but being also presynaptic to granule cell dendrites. It is suggested that all mossy terminals in the cerebellar transplant originate from the cerebellar nucleus. Morphological evidence is also provided that the presynaptic dendrite-like processes--never found in normal cerebellar cortex--are also processes of nuclear neurons.  相似文献   

10.
Long-term depression of kainate receptor-mediated synaptic transmission   总被引:3,自引:0,他引:3  
Park Y  Jo J  Isaac JT  Cho K 《Neuron》2006,49(1):95-106
Kainate receptors (KARs) have been shown to be involved in hippocampal mossy fiber long-term potentiation (LTP); however, it is not known if KARs are involved in the induction or expression of long-term depression (LTD), the other major form of long-term synaptic plasticity. Here we describe LTD of KAR-mediated synaptic transmission (EPSC(KA) LTD) in perirhinal cortex layer II/III neurons that is distinct from LTD of AMPAR-mediated transmission, which also coexists at the same synapses. Induction of EPSC(KA) LTD requires a rise in postsynaptic Ca(2+) but is independent of NMDARs or T-type voltage-gated Ca(2+) channels; however, it requires synaptic activation of inwardly rectifying KARs and release of Ca(2+) from stores. The synaptic KARs are regulated by tonically activated mGluR5, and expression of EPSC(KA) LTD occurs via a mechanism involving mGluR5, PKC, and PICK1 PDZ domain interactions. Thus, we describe the induction and expression mechanism of a form of synaptic plasticity, EPSC(KA) LTD.  相似文献   

11.
Although nerve growth factor (NGF) is a crucial factor in the activity-dependent development and plasticity of visual cortex, its role in synaptic efficacy changes is largely undefined. We demonstrate that the maintenance phase of long-term potentiation (LTP) is blocked by local application of exogenous NGF in rat visual cortex at an early stage of postnatal development. Long-term depression (LTD) and bidirectional plasticity are unaffected. At later postnatal ages, blockade of either endogenous NGF by immunoadhesin (TrkA-IgG) or TrkA receptors by monoclonal antibody rescues LTP. Muscarinic receptor activation/inhibition suggests that LTP dependence on NGF is mediated by the cholinergic system. These results indicate that NGF regulates synaptic strength in well-characterized cortical circuitries.  相似文献   

12.
Changes in synaptic efficacies need to be long-lasting in order to serve as a substrate for memory. Experimentally, synaptic plasticity exhibits phases covering the induction of long-term potentiation and depression (LTP/LTD) during the early phase of synaptic plasticity, the setting of synaptic tags, a trigger process for protein synthesis, and a slow transition leading to synaptic consolidation during the late phase of synaptic plasticity. We present a mathematical model that describes these different phases of synaptic plasticity. The model explains a large body of experimental data on synaptic tagging and capture, cross-tagging, and the late phases of LTP and LTD. Moreover, the model accounts for the dependence of LTP and LTD induction on voltage and presynaptic stimulation frequency. The stabilization of potentiated synapses during the transition from early to late LTP occurs by protein synthesis dynamics that are shared by groups of synapses. The functional consequence of this shared process is that previously stabilized patterns of strong or weak synapses onto the same postsynaptic neuron are well protected against later changes induced by LTP/LTD protocols at individual synapses.  相似文献   

13.
Cui Y  Jin J  Zhang X  Xu H  Yang L  Du D  Zeng Q  Tsien JZ  Yu H  Cao X 《PloS one》2011,6(5):e20312
Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.  相似文献   

14.
In addition to (i) mossy terminals, (ii) Golgi axons, (iii) granule cell dendrites and (iv), occasionally, Golgi cell dendrites, a third axonal profile identified by morphological criteria as the collateral of Purkinje axons, has been found in 2% of all cerebellar glomeruli. These infrequent components of a few glomeruli, however, were never seen in normal cerebellar cortex to establish specialized synaptic contact with glomerular dendrites. Two to four weeks after surgical isolation of the cerebellar cortex, i.e. following the destruction of both efferent and afferent fibres, the number of glomeruli containing (hypertrophic) axonal branches of Purkinje cells has increased to 13% of all surveyed glomeruli. In addition, the Purkinje axon terminals in the mossy fibre-deprived glomeruli were observed to establish numerous Gray II-type synaptic contacts with surrounding granule cell dendrites. It is suggested that the development of heterologous synapses between hypertrophic, or even intact, Purkinje axon collaterals on the one hand and the mossy fibre-vacated granule cell dendrites on the other, is a compensatory, reactive process to the synaptic "desaturation" of granule neurons, which demonstrate a dormant potential of Purkinje cells to form new synaptic contacts in the adult cerebellum.  相似文献   

15.
Natural patterns of activity and long-term synaptic plasticity   总被引:12,自引:0,他引:12  
Long-term potentiation (LTP) of synaptic transmission is traditionally elicited by massively synchronous, high-frequency inputs, which rarely occur naturally. Recent in vitro experiments have revealed that both LTP and long-term depression (LTD) can arise by appropriately pairing weak synaptic inputs with action potentials in the postsynaptic cell. This discovery has generated new insights into the conditions under which synaptic modification may occur in pyramidal neurons in vivo. First, it has been shown that the temporal order of the synaptic input and the postsynaptic spike within a narrow temporal window determines whether LTP or LTD is elicited, according to a temporally asymmetric Hebbian learning rule. Second, backpropagating action potentials are able to serve as a global signal for synaptic plasticity in a neuron compared with local associative interactions between synaptic inputs on dendrites. Third, a specific temporal pattern of activity--postsynaptic bursting--accompanies synaptic potentiation in adults.  相似文献   

16.
Plasticity of feedforward inhibition in the hippocampal mossy fiber (MF) pathway can dramatically influence dentate gyrus-CA3 dialog. Interestingly, MF inputs to CA3 stratum lucidum interneurons (SLINs) undergo long-term depression (LTD) following high-frequency stimulation (HFS), in contrast to MF-pyramid (PYR) synapses, where long-term potentiation (LTP) occurs. Furthermore, activity-induced potentiation of MF-SLIN transmission has not previously been observed. Here we report that metabotropic glutamate receptor subtype 7 (mGluR7) is a metaplastic switch at MF-SLIN synapses, whose activation and surface expression governs the direction of plasticity. In naive slices, mGluR7 activation during HFS generates MF-SLIN LTD, depressing presynaptic release through a PKC-dependent mechanism. Following agonist exposure, mGluR7 undergoes internalization, unmasking the ability of MF-SLIN synapses to undergo presynaptic potentiation in response to the same HFS that induces LTD in naive slices. Thus, selective mGluR7 targeting to MF terminals contacting SLINs and not PYRs provides cell target-specific plasticity and bidirectional control of feedforward inhibition.  相似文献   

17.
Protein phosphatase-1 (PP1) has been implicated in the control of long-term potentiation (LTP) and depression (LTD) in rat hippocampal CA1 neurons. PP1 catalytic subunits associate with multiple postsynaptic regulatory subunits, but the PP1 complexes that control hippocampal LTP and LTD in the rat hippocampus remain unidentified. The neuron-specific actin-binding protein, neurabin-I, is enriched in dendritic spines, and tethers PP1 to actin-rich postsynaptic density to regulate morphology and maturation of spines. The present studies utilized Sindbis virus-mediated expression of wild-type and mutant neurabin-I polypeptides in organotypic cultures of rat hippocampal slices to investigate their role in synaptic plasticity. While wild-type neurabin-I elicited no change in basal synaptic transmission, it enhanced LTD and inhibited LTP in CA1 pyramidal neurons. By comparison, mutant neurabins, specifically those unable to bind PP1 or F-actin, decreased basal synaptic transmission, attenuated LTD and increased LTP in slice cultures. Biochemical and cell biological analyses suggested that, by mislocalizing synaptic PP1, the mutant neurabins impaired the functions of endogenous neurabin-PP1 complexes and modulated LTP and LTD. Together, these studies provided the first biochemical and physiological evidence that a postsynaptic actin-bound neurabin-I-PP1 complex regulates synaptic transmission and bidirectional changes in hippocampal plasticity.  相似文献   

18.
As more genes conferring risks to neurodevelopmental disorders are identified, translating these genetic risk factors into biological mechanisms that impact the trajectory of the developing brain is a critical next step. Here, we report that disrupted signaling mediated MET receptor tyrosine kinase (RTK), an established risk factor for autism spectrum disorders, in the developing hippocampus glutamatergic circuit leads to profound deficits in neural development, synaptic transmission, and plasticity. In cultured hippocampus slices prepared from neonatal mice, pharmacological inhibition of MET kinase activity suppresses dendritic arborization and disrupts normal dendritic spine development. In addition, single‐neuron knockdown (RNAi) or overexpression of Met in the developing hippocampal CA1 neurons leads to alterations, opposite in nature, in basal synaptic transmission and long‐term plasticity. In forebrain‐specific Met conditional knockout mice (Metfx/fx;emx1cre), an enhanced long‐term potentiation (LTP) and long‐term depression (LTD) were observed at early developmental stages (P12–14) at the Schaffer collateral to CA1 synapses compared with wild‐type littermates. In contrast, LTP and LTD were markedly reduced at young adult stage (P56–70) during which wild‐type mice show robust LTP and LTD. The altered trajectory of synaptic plasticity revealed by this study indicate that temporally regulated MET signaling as an intrinsic, cell autonomous, and pleiotropic mechanism not only critical for neuronal growth and functional maturation, but also for the timing of synaptic plasticity during forebrain glutamatergic circuits development.  相似文献   

19.
BACKGROUND: Changes in synaptic efficacy are believed to mediate the processes of learning and memory formation. Accumulating evidence implicates cell adhesion molecules in activity-dependent synaptic modifications associated with long-term potentiation (LTP); however, there is no precedence for the selective role of this molecule class in long-term depression (LTD). The mechanisms that modulate these processes still remain unclear. RESULTS: We report a novel role for glycosylphosphatidyl inositol (GPI)-anchored contactin in hippocampal CA1 synaptic plasticity. Contactin selectively supports paired-pulse facilitation (PPF) and NMDA (N-methyl-D-aspartate) receptor-dependent LTD but is not required for synaptic morphology, basal transmission, or LTP. Molecular analyses indicate that contactin is essential for the membrane and synaptic targeting of the contactin-associated protein (Caspr/paranodin) and for the proper distribution of a presumptive ligand, receptor protein tyrosine phosphatase beta (RPTPbeta)/phosphacan. CONCLUSIONS: These results indicate that contactin plays a selective role in synaptic plasticity and identify PPF and LTD, but not LTP, as contactin-dependent processes. Engagement of the contactin-Caspr complex with RPTPbeta may thus regulate cell-cell interactions contributing to specific synaptic plasticity forms.  相似文献   

20.
The role of calmodulin as a signal integrator for synaptic plasticity   总被引:12,自引:0,他引:12  
Excitatory synapses in the brain show several forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), which are initiated by increases in intracellular Ca(2+) that are generated through NMDA (N-methyl-D-aspartate) receptors or voltage-sensitive Ca(2+) channels. LTP depends on the coordinated regulation of an ensemble of enzymes, including Ca(2+)/calmodulin-dependent protein kinase II, adenylyl cyclase 1 and 8, and calcineurin, all of which are stimulated by calmodulin, a Ca(2+)-binding protein. In this review, we discuss the hypothesis that calmodulin is a central integrator of synaptic plasticity and that its unique regulatory properties allow the integration of several forms of signal transduction that are required for LTP and LTD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号