首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Müller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Müller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy.

Methodology/Principal Findings

We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Müller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Müller glial cells, several other inner retinal cell types were transduced. To obtain Müller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1−/− retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Müller glial cells aligning retinal blood vessels.

Conclusions/Significance

Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells.  相似文献   

2.

Background

The pathologies of numerous retinal degenerative diseases can be attributed to a multitude of genetic factors, and individualized treatment options for afflicted patients are limited and cost-inefficient. In light of the shared neurodegenerative phenotype among these disorders, a safe and broad-based neuroprotective approach would be desirable to overcome these obstacles. As a result, gene delivery of secretable-neuroprotective factors to Müller cells, a type of retinal glia that contacts all classes of retinal neurons, represents an ideal approach to mediate protection of the entire retina through a simple and innocuous intraocular, or intravitreal, injection of an efficient vehicle such as an adeno-associated viral vector (AAV). Although several naturally occurring AAV variants have been isolated with a variety of tropisms, or cellular specificities, these vectors inefficiently infect Müller cells via intravitreal injection.

Methodology/Principal Findings

We have previously applied directed evolution to create several novel AAV variants capable of efficient infection of both rat and human astrocytes through iterative selection of a panel of highly diverse AAV libraries. Here, in vivo and in vitro characterization of these isolated variants identifies a previously unreported AAV variant ShH10, closely related to AAV serotype 6 (AAV6), capable of efficient, selective Müller cell infection through intravitreal injection. Importantly, this new variant shows significantly improved transduction relative to AAV2 (>60%) and AAV6.

Conclusions/Significance

Our findings demonstrate that AAV is a highly versatile vector capable of powerful shifts in tropism from minor sequence changes. This isolated variant represents a new therapeutic vector to treat retinal degenerative diseases through secretion of neuroprotective factors from Müller cells as well as provides new opportunities to study their biological functions in the retina.  相似文献   

3.

Background

Adeno-associated virus (AAV) is well established as a vehicle for in vivo gene transfer into the mammalian retina. This virus is promising not only for gene therapy of retinal diseases, but also for in vivo functional analysis of retinal genes. Previous reports have shown that AAV can infect various cell types in the developing mouse retina. However, AAV tropism in the developing retina has not yet been examined in detail.

Methodology/Principal Findings

We subretinally delivered seven AAV serotypes (AAV2/1, 2/2, 2/5, 2/8, 2/9, 2/10, and 2/11) of AAV-CAG-mCherry into P0 mouse retinas, and quantitatively evaluated the tropisms of each serotype by its infecting degree in retinal cells. After subretinal injection of AAV into postnatal day 0 (P0) mouse retinas, various retinal cell types were efficiently transduced with different AAVs. Photoreceptor cells were efficiently transduced with AAV2/5. Retinal cells, except for bipolar and Müller glial cells, were efficiently transduced with AAV2/9. Horizontal and/or ganglion cells were efficiently transduced with AAV2/1, AAV2/2, AAV2/8, AAV2/9 and AAV2/10. To confirm the usefulness of AAV-mediated gene transfer into the P0 mouse retina, we performed AAV-mediated rescue of the Cone-rod homeobox gene knockout (Crx KO) mouse, which exhibits an outer segment formation defect, flat electroretinogram (ERG) responses, and photoreceptor degeneration. We injected an AAV expressing Crx under the control of the Crx 2kb promoter into the neonatal Crx KO retina. We showed that AAV mediated-Crx expression significantly decreased the abnormalities of the Crx KO retina.

Conclusion/Significance

In the current study, we report suitable AAV tropisms for delivery into the developing mouse retina. Using AAV2/5 in photoreceptor cells, we demonstrated the possibility of gene replacement for the developmental disorder and subsequent degeneration of retinal photoreceptors caused by the absence of Crx.  相似文献   

4.

Purpose

microRNAs have emerged as key regulators of gene expression, and their altered expression has been associated with tumorigenesis and tumor progression. Thus, microRNAs have potential as both cancer biomarkers and/or potential novel therapeutic targets. Although accumulating evidence suggests the role of aberrant microRNA expression in endometrial carcinogenesis, there are still limited data available about the prognostic significance of microRNAs in endometrial cancer. The goal of this study is to investigate the prognostic value of selected key microRNAs in endometrial cancer by the analysis of archival formalin-fixed paraffin-embedded tissues.

Experimental Design

Total RNAs were extracted from 48 paired normal and endometrial tumor specimens using Trizol based approach. The expression of miR-26a, let-7g, miR-21, miR-181b, miR-200c, miR-192, miR-215, miR-200c, and miR-205 were quantified by real time qRT-PCR expression analysis. Targets of the differentially expressed miRNAs were quantified using immunohistochemistry. Statistical analysis was performed by GraphPad Prism 5.0.

Results

The expression levels of miR-200c (P<0.0001) and miR-205 (P<0.0001) were significantly increased in endometrial tumors compared to normal tissues. Kaplan-Meier survival analysis revealed that high levels of miR-205 expression were associated with poor patient overall survival (hazard ratio, 0.377; Logrank test, P = 0.028). Furthermore, decreased expression of a miR-205 target PTEN was detected in endometrial cancer tissues compared to normal tissues.

Conclusion

miR-205 holds a unique potential as a prognostic biomarker in endometrial cancer.  相似文献   

5.

Background

Lung disease including airway infection and inflammation currently causes the majority of morbidities and mortalities associated with cystic fibrosis (CF), making the airway epithelium and the submucosal glands (SMG) novel target cells for gene therapy in CF. These target cells are relatively inaccessible to postnatal gene transfer limiting the success of gene therapy. Our previous work in a human-fetal trachea xenograft model suggests the potential benefit for treating CF in utero. In this study, we aim to validate adeno-associated virus serotype 2 (AAV2) gene transfer in a human fetal trachea xenograft model and to compare transduction efficiencies of pseudotyping AAV2 vectors in fetal xenografts and postnatal xenograft controls.

Methodology/Principal Findings

Human fetal trachea or postnatal bronchus controls were xenografted onto immunocompromised SCID mice for a four-week engraftment period. After injection of AAV2/2, 2/1, 2/5, 2/7 or 2/8 with a LacZ reporter into both types of xenografts, we analyzed for transgene expression in the respiratory epithelium and SMGs. At 1 month, transduction by AAV2/2 and AAV2/8 in respiratory epithelium and SMG cells was significantly greater than that of AAV2/1, 2/5, and 2/7 in xenograft tracheas. Efficiency in SMG transduction was significantly greater in AAV2/8 than AAV2/2. At 3 months, AAV2/2 and AAV2/8 transgene expression was >99% of respiratory epithelium and SMG. At 1 month, transduction efficiency of AAV2/2 and AAV2/8 was significantly less in adult postnatal bronchial xenografts than in fetal tracheal xenografts.

Conclusions/Significance

Based on the effectiveness of AAV vectors in SMG transduction, our findings suggest the potential utility of pseudotyped AAV vectors for treatment of cystic fibrosis. The human fetal trachea xenograft model may serve as an effective tool for further development of fetal gene therapy strategies for the in utero treatment of cystic fibrosis.  相似文献   

6.
7.

Background

Hepatic gene transfer, in particular using adeno-associated viral (AAV) vectors, has been shown to induce immune tolerance to several protein antigens. This approach has been exploited in animal models of inherited protein deficiency for systemic delivery of therapeutic proteins. Adequate levels of transgene expression in hepatocytes induce a suppressive T cell response, thereby promoting immune tolerance. This study addresses the question of whether AAV gene transfer can induce tolerance to a cytoplasmic protein.

Major Findings

AAV-2 vector-mediated hepatic gene transfer for expression of cytoplasmic β-galactosidase (β-gal) was performed in immune competent mice, followed by a secondary β-gal gene transfer with E1/E3-deleted adenoviral Ad-LacZ vector to provoke a severe immunotoxic response. Transgene expression from the AAV-2 vector in ∼2% of hepatocytes almost completely protected from inflammatory T cell responses against β-gal, eliminated antibody formation, and significantly reduced adenovirus-induced hepatotoxicity. Consequently, ∼10% of hepatocytes continued to express β-gal 45 days after secondary Ad-LacZ gene transfer, a time point when control mice had lost all Ad-LacZ derived expression. Suppression of inflammatory T cell infiltration in the liver and liver damage was linked to specific transgene expression and was not seen for secondary gene transfer with Ad-GFP. A combination of adoptive transfer studies and flow cytometric analyses demonstrated induction of Treg that actively suppressed CD8+ T cell responses to β-gal and that was amplified in liver and spleen upon secondary Ad-LacZ gene transfer.

Conclusions

These data demonstrate that tolerance induction by hepatic AAV gene transfer does not require systemic delivery of the transgene product and that expression of a cytoplasmic neo-antigen in few hepatocytes can induce Treg and provide long-term suppression of inflammatory responses and immunotoxicity.  相似文献   

8.
9.
10.
11.

Background

MicroRNA expression is altered in cancer cells, and microRNAs could serve as diagnostic/prognostic biomarker for cancer patients. Our study was designed to analyze circulating serum microRNAs in patients with renal cell carcinoma (RCC).

Methodology/Principal Findings

We first explored microRNA expression profiles in tissue and serum using TaqMan Low Density Arrays in each six malignant and benign samples: Although 109 microRNAs were circulating at higher levels in cancer patients'' serum, we identified only 36 microRNAs with up-regulation in RCC tissue and serum of RCC patients. Seven candidate microRNAs were selected for verification based on the finding of up-regulation in serum and tissue of RCC patients: miR-7-1*, miR-93, miR-106b*, miR-210, miR-320b, miR-1233 and miR-1290 levels in serum of healthy controls (n = 30) and RCC (n = 33) patients were determined using quantitative real-time PCR (TaqMan MicroRNA Assays). miR-1233 was increased in RCC patients, and thus validated in a multicentre cohort of 84 RCC patients and 93 healthy controls using quantitative real-time PCR (sensitivity 77.4%, specificity 37.6%, AUC 0.588). We also studied 13 samples of patients with angiomyolipoma or oncocytoma, whose serum miR-1233 levels were similar to RCC patients. Circulating microRNAs were not correlated with clinical-pathological parameters.

Conclusions/Significance

MicroRNA levels are distinctly increased in cancer patients, although only a small subset of circulating microRNAs has a tumor-specific origin. We identify circulating miR-1233 as a potential biomarker for RCC patients. Larger-scaled studies are warranted to fully explore the role of circulating microRNAs in RCC.  相似文献   

12.

Background

Epigenetic mechanisms, including DNA methylation, histone modification, and microRNAs, play pivotal roles in stem cell biology. Methyl-CpG binding protein 1 (MBD1), an important epigenetic regulator of adult neurogenesis, controls the proliferation and differentiation of adult neural stem/progenitor cells (aNSCs). We recently demonstrated that MBD1 deficiency in aNSCs leads to altered expression of several noncoding microRNAs (miRNAs).

Methodology/Principal Findings

Here we show that one of these miRNAs, miR-195, and MBD1 form a negative feedback loop. While MBD1 directly represses the expression of miR-195 in aNSCs, high levels of miR-195 in turn repress the expression of MBD1. Both gain-of-function and loss-of-function investigations show that alterations of the MBD1–miR-195 feedback loop tip the balance between aNSC proliferation and differentiation.

Conclusions/Significance

Therefore the regulatory loop formed by MBD1 and miR-195 is an important component of the epigenetic network that controls aNSC fate.  相似文献   

13.

Background

MicroRNAs are a family of 19- to 25-nucleotides noncoding small RNAs that primarily function as gene regulators. Aberrant microRNA expression has been described for several human malignancies, and this new class of small regulatory RNAs has both oncogenic and tumor suppressor functions. Despite this knowledge, there is little information regarding microRNAs in plasma especially because microRNAs in plasma, if exist, were thought to be digested by RNase. Recent studies, however, have revealed that microRNAs exist and escape digestion in plasma.

Methodology/Principal Findings

We performed microRNA microaray to obtain insight into microRNA deregulation in the plasma of a leukemia patient. We have revealed that microRNA-638 (miR-638) is stably present in human plasmas, and microRNA-92a (miR-92a) dramatically decreased in the plasmas of acute leukemia patients. Especially, the ratio of miR-92a/miR-638 in plasma was very useful for distinguishing leukemia patients from healthy body.

Conclusions/Significance

The ratio of miR-92a/miR-638 in plasma has strong potential for clinical application as a novel biomarker for detection of leukemia.  相似文献   

14.

Rationale

Sepsis is a common cause of death in the intensive care unit with mortality up to 70% when accompanied by multiple organ dysfunction. Rapid diagnosis and the institution of appropriate antibiotic therapy and pressor support are therefore critical for survival. MicroRNAs are small non-coding RNAs that play an important role in the regulation of numerous cellular processes, including inflammation and immunity.

Objectives

We hypothesized changes in expression of microRNAs during sepsis may be of diagnostic value in the intensive care unit (ICU).

Methods

Massively parallel sequencing of microRNAs was utilised for screening microRNA candidates. Putative microRNAs were validated using quantitative real-time PCR (qRT-PCR). This study includes data from both a training cohort (UK) and an independent validation cohort (Sweden). A linear discriminant statistical model was employed to construct a diagnostic microRNA signature.

Results

A panel of known and novel microRNAs were detectable in the blood of patients with sepsis. After qRT-PCR validation, microRNA miR-150 and miR-4772-5p-iso were able to discriminate between patients who have systemic inflammatory response syndrome and patients with sepsis. This finding was also validated in independent cohort with an average diagnostic accuracy of 86%. Fractionating the cellular components of blood reveals miR-4772-5p-iso is expressed differentially in monocytes. Functional experiments using primary human monocytes demonstrate that it expressed in response to TLR ligation.

Conclusions

Taken together, these data provide a novel microRNA signature of sepsis that should allow rapid point-of-care diagnostic assessment of patients on ICU and also provide greater insight into the pathobiology of this severe disease.  相似文献   

15.

Background

Adeno-associated virus has attracted great attention as vehicle for body-wide gene delivery. However, for the successful treatment of a disease such as Duchenne muscular dystrophy infusion of very large amounts of vectors is required. This not only raises questions about the technical feasibility of the large scale production but also about the overall safety of the approach. One way to overcome these problems would be to find strategies able to increase the in vivo efficiency.

Methodology

Here, we investigated whether polymers can act as adjuvants to increase the in vivo efficiency of AAV2. Our strategy consisted in the pre-injection of polymers before intravenous administration of mice with AAV2 encoding a murine secreted alkaline phosphatase (mSeAP). The transgene expression, vector biodistribution and tissue transduction were studied by quantification of the mSeAP protein and real time PCR. The injection of polyinosinic acid and polylysine resulted in an increase of plasmatic mSeAP of 2- and 12-fold, respectively. Interestingly, polyinosinic acid pre-injection significantly reduced the neutralizing antibody titer raised against AAV2.

Conclusions

Our results show that the pre-injection of polymers can improve the overall transduction efficiency of systemically administered AAV2 and reduce the humoral response against the capsid proteins.  相似文献   

16.

Background and Aim

Altered expression of microRNAs (miRNAs) hallmarks many cancer types. The study of the associations of miRNA expression profile and cancer phenotype could help identify the links between deregulation of miRNA expression and oncogenic pathways.

Methods

Expression profiling of 866 human miRNAs in 19 colorectal and 17 pancreatic cancers and in matched adjacent normal tissues was investigated. Classical paired t-test and random forest analyses were applied to identify miRNAs associated with tissue-specific tumors. Network analysis based on a computational approach to mine associations between cancer types and miRNAs was performed.

Results

The merge between the two statistical methods used to intersect the miRNAs differentially expressed in colon and pancreatic cancers allowed the identification of cancer-specific miRNA alterations. By miRNA-network analysis, tissue-specific patterns of miRNA deregulation were traced: the driving miRNAs were miR-195, miR-1280, miR-140-3p and miR-1246 in colorectal tumors, and miR-103, miR-23a and miR-15b in pancreatic cancers.

Conclusion

MiRNA expression profiles may identify cancer-specific signatures and potentially useful biomarkers for the diagnosis of tissue specific cancers. miRNA-network analysis help identify altered miRNA regulatory networks that could play a role in tumor pathogenesis.  相似文献   

17.
18.

Background

The extraordinary invasive capability is a major cause of treatment failure and tumor recurrence in glioma, however, the molecular and cellular mechanisms governing glioma invasion remain poorly understood. Evidence in other cell systems has implicated the regulatory role of microRNA in cell motility and invasion, which promotes us to investigate the biological functions of miR-124 in glioma in this regard.

Results

We have found that miR-124 is dramatically downregulated in clinical specimen of glioma and is negatively correlated with the tumor pathological grading in the current study. The cells transfected by miR-124 expression vector have demonstrated retarded cell mobility. Using a bioinformatics analysis approach, rho-associated coiled-coil containing protein kinase 1 (ROCK1), a well-known cell mobility-related gene, has been identified as the target of miR-124. A dual-luciferase reporter assay was used to confirm that miR-124 targeted directly the 3′UTR of ROCK1 gene and repressed the ROCK1 expression in U87MG human glioma cell line. Furthermore, experiments have shown that the decreased cell mobility was due to the actin cytoskeleton rearrangements and the reduced cell surface ruffle in U87MG glioma cells. These results are similar to the cellular responses of U87MG glioma cells to the treatment of Y-27632, an inhibitor of ROCK protein. Moreover, a constitutively active ROCK1 in miR-124 over-expressed glioma cells reversed the effects of miR-124. Our results revealed a novel mechanism that miR-124 inhibits glioma cells migration and invasion via ROCK1 downregulation.

Conclusions

These results suggest that miR-124 may function as anti-migration and anti-invasion influence in glioma and provides a potential approach for developing miR-124-based therapeutic strategies for malignant glioma therapy.  相似文献   

19.

Background

Adeno associated virus (AAV) is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV’s ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC) of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc) genomes in the anterior segment of the eye.

Methodology/Principle Findings

AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE), iris and chamber angle including trabecular meshwork, with scAAV2(Y444F) and scAAV2(triple) being the most efficient.

Conclusions/Significance

This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene-based therapies for glaucoma and acquired or inherited corneal anomalies.  相似文献   

20.

Purpose

To identify tissue microRNAs predictive of sunitinib activity in patients with metastatic renal-cell-carcinoma (MRCC) and to evaluate in vitro their mechanism of action in sunitinib resistance.

Methods

We screened 673 microRNAs using TaqMan Low-density-Arrays (TLDAs) in tumors from MRCC patients with extreme phenotypes of marked efficacy and resistance to sunitinib, selected from an identification cohort (n = 41). The most relevant differentially expressed microRNAs were selected using bioinformatics-based target prediction analysis and quantified by qRT-PCR in tumors from patients presenting similar phenotypes selected from an independent cohort (n = 101). In vitro experiments were conducted to study the role of miR-942 in sunitinib resistance.

Results

TLDAs identified 64 microRNAs differentially expressed in the identification cohort. Seven candidates were quantified by qRT-PCR in the independent series. MiR-942 was the most accurate predictor of sunitinib efficacy (p = 0.0074). High expression of miR-942, miR-628-5p, miR-133a, and miR-484 was significantly associated with decreased time to progression and overall survival. These microRNAs were also overexpressed in the sunitinib resistant cell line Caki-2 in comparison with the sensitive cell line. MiR-942 overexpression in Caki-2 up-regulates MMP-9 and VEGF secretion which, in turn, promote HBMEC endothelial migration and sunitinib resistance.

Conclusions

We identified differentially expressed microRNAs in MRCC patients presenting marked sensitivity or resistance to sunitinib. MiR-942 was the best predictor of efficacy. We describe a novel paracrine mechanism through which high miR-942 levels in MRCC cells up-regulates MMP-9 and VEGF secretion to enhance endothelial migration and sunitinib resistance. Our results support further validation of these miRNA in clinical confirmatory studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号