首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Viral therapy of cancer (viral oncolysis) is dependent on selective destruction of the tumor tissue compared with healthy tissues. Several factors, including receptor expression, extracellular components, and intracellular mechanisms, may influence viral oncolysis. In the present work, we studied the potential oncolytic activity of herpes simplex virus type 1 (HSV-1), using an organ culture system derived from colon carcinoma and healthy colon tissues of mouse and human origin. HSV-1 infected normal colons ex vivo at a very low efficiency, in contrast to high-efficiency infection of colon carcinoma tissue. In contrast, adenoviral and lentiviral vectors infected both tissues equally well. To investigate the mechanisms underlying the preferential affinity of HSV-1 for the carcinoma tissue, intracellular and extracellular factors were investigated. Two extracellular components, collagen and mucin molecules, were found to restrict HSV-1 infectivity in the healthy colon. The mucin layer of the healthy colon binds to HSV-1 and thereby blocks viral interaction with the epithelial cells of the tissue. In contrast, colon carcinomas express small amounts of collagen and mucin molecules and are thus permissive to HSV-1 infection. In agreement with the ex vivo system, HSV-1 injected into a mouse colon carcinoma in vivo significantly reduced the volume of the tumor. In conclusion, we describe a novel mechanism of viral selectivity for malignant tissues that is based on variance of the extracellular matrix between tumor and healthy tissues. These insights may facilitate new approaches to the application of HSV-1 as an oncolytic virus.  相似文献   

3.
We used live-cell, real-time fluorescence imaging of co-cultures of HIV-1 infected T cells and uninfected target cells to examine the action of mitochondria during cell-to-cell transmission of the virus. We find that mitochondria of HIV infected cells enter uninfected target cells and advance viral spread. We show that human mitochondria serve as viral reservoirs and carriers and that they can move between cells. This was confirmed by our results that purified mitochondria from HIV infected cells are infectious, and that mitochondrial inhibitors block HIV transmission. Viral infection and replication in the target cells were verified by syncytial formation and HIV-1 core protein p24 production. Our results offer new insights into the cellular mechanisms of viral transmission and identify mitochondria as new host targets for viral infection.  相似文献   

4.
Soluble factors with inhibitory activity against type 1 Human Immunodeficiency Virus The pathogenesis of HIV-1 infection is a complex process that depends on multiple factors, including viral and host immune and genetic characteristics. This leads to a variable pattern of disease progression among those HIV-1-exposed individuals who become infected, while there are a number of individuals who remain healthy and HIV-1 seronegative despite being serially exposed to HIV-1. These variable outcomes of HIV-1 exposure suggest that there are mechanisms of natural resistance to HIV-1 infection. Although several genetic and adaptive immune mechanisms of resistance have been reported in some exposed seronegative and long-term non-progressor individuals, the mechanisms involved in controlling the establishment and progression of HIV-1 infection are not fully understood. Several soluble factors, such as defensins, chemokines, interferons and ribonucleases, among others, produced by cells of the immune system and epithelial tissues, have a broad anti-viral activity that might play a role as protective mechanisms during HIV-1 exposure. A better understanding of the mechanisms and role of these soluble factors during the natural resistance to HIV-1 infection may have important implications for the design of novel therapeutic strategies to combat the morbidity and mortality associated with the HIV-1 pandemic.  相似文献   

5.
We studied the mechanism of in vitro spontaneous lymphokine production by spleen cells from mice injected intraperitoneally with murine coronavirus stain JHM 1 month after infection, when infectious virus had already been cleared from the spleens. Removal of either CD4+ T cells or Ia+ antigen-presenting cells (APC) from the spleen cells abrogated interleukin-2 (IL-2) production. Addition of anti-CD4 or anti-Iad monoclonal antibodies to the culture suppressed IL-2 production. These results suggest that the response involved typical receptor-mediated activation of T cells. Surprisingly, reciprocal mixing experiments with a coculture of T cells from infected mice and APC from either infected or naive mice resulted in the production of IL-2. The absence of viral antigens in spleen cells 1 month after infection, as indicated by their inability to induce the proliferation of T-cell clones specific for the viral antigens, suggest that the T cells from mice 1 month after infection were not responding to the viral antigens. The inoculum components other than the virus did not induce this immune response. We also found that the frequency of self-reactive but not alloreactive IL-2-producing T cells in the spleens of infected mice was 3- to 10-fold higher than that in naive mice. These findings suggest that an increased frequency of self-reactive T cells which secrete IL-2 occurs following murine coronavirus infection. This may have important implications in the development of autoimmunelike phenomena following murine coronavirus infection.  相似文献   

6.
目的探讨不同种雏鸭建立鸭乙肝病毒感染模型的影响因素,观察应用该模型抗病毒的效果。方法采集鸭血清,应用PCR方法定性检测鸭血清中病毒DNA;定量PCR方法检测鸭血清中病毒DNA载量变化;用抗病毒药物处理,观察其在鸭DHBV感染模型中的抗病毒效果。结果不同种鸭DHBV自然感染率不同,樱桃谷鸭为8.75%,湖北麻鸭两个批次分别为17.80%和10.68%;静脉注射和腹腔注射两途径均能致雏鸭感染DHBV,静脉注射感染率80%,腹腔注射感染率65%;鸭感染DHBV后,体内病毒载量维持在106~108copies/mL,可持续20 d以上;抗病毒药物处理后,在不同DHBV模型中其抗病毒效果变化趋势一致。结论鸭的种类和人工感染途径可影响DHBV感染率;雏鸭感染DHBV后其体内有持续性的病毒血症;DHBV感染模型是药物抗病毒研究较好模型。  相似文献   

7.
A mathematical model of the host’s immune response to HIV infection is proposed. The model represents the dynamics of 13 subsets of T cells (HIV-specific and nonspecific, healthy and infected, T4 and T8 cells), infected macrophages, neutralizing antibodies, and virus. The results of simulation are in agreement with published data regarding T4 cell concentration and viral load, and exhibit the typical features of HIV infection, i.e. double viral peaks in the acute stage, sero conversion, inverted T cell ratio, establishment of set points, steady state, and decline into AIDS. This result is achieved by taking into account thymic aging, viral and infected cell stimulation of specific immune cells, background nonspecific antigens, infected cell proliferation, viral production by infected macrophages and T cells, tropism, viral, and immune adaptation. Starting from this paradigm, changes in the parameter values simulate observed differences in individual outcomes, and predict different scenarios, which can suggest new directions in therapy. In particular, large parameter changes highlight the potentially critical role of both very vigorous and extremely damped specific immune response, and of the elimination of virus release by macrophages. Finally, the time courses of virus, antibody and T cells production and removal are systematically investigated, and a comparison of T4 and T8 cell dynamics in a healthy and in a HIV infected host is offered.  相似文献   

8.
9.
Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, we are able to evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in size from infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship between the cluster size and the estimated cluster expansion time. Our method represents a novel approach to make inferences about infection dynamics in solid tissues from static spatial data.  相似文献   

10.
In cells infected by influenza virus type A, host protein synthesis undergoes a rapid and dramatic shutoff. To define the molecular mechanisms underlying this selective translation, a transfection/infection protocol was developed utilizing viral and cellular cDNA clones. When COS-1 cells were transfected with cDNAs encoding nonviral genes and subsequently infected with influenza virus, protein expression from the exogenous genes was diminished, similar to the endogenous cellular genes. However, when cells were transfected with a truncated influenza viral nucleocapsid protein (NP-S) gene, the NP-S protein was made as efficiently in influenza virus infected cells as in uninfected cells, showing that the NP-S mRNA, although expressed independently of the influenza virus replication machinery, was still recognized as a viral and not a cellular mRNA. Northern blot analysis demonstrated that the selective blocks to nonviral protein synthesis were at the level of translation. Moreover, polysome experiments revealed that the translational blocks occurred at both the initiation and elongation stages of cellular protein synthesis. Finally, we utilized this transfection/infection system as well as double infection experiments to demonstrate that the translation of influenza viral mRNAs probably occurred in a cap-dependent manner as poliovirus infection inhibited influenza viral mRNA translation.  相似文献   

11.
Treatment of HIV-1-infected individuals with a combination of anti-retroviral agents results in sustained suppression of HIV-1 replication, as evidenced by a reduction in plasma viral RNA to levels below the limit of detection of available assays. However, even in patients whose plasma viral RNA levels have been suppressed to below detectable levels for up to 30 months, replication-competent virus can routinely be recovered from patient peripheral blood mononuclear cells and from semen. A reservoir of latently infected cells established early in infection may be involved in the maintenance of viral persistence despite highly active anti-retroviral therapy. However, whether virus replication persists in such patients is unknown. HIV-1 cDNA episomes are labile products of virus infection and indicative of recent infection events. Using episome-specific PCR, we demonstrate here ongoing virus replication in a large percentage of infected individuals on highly active anti-retroviral therapy, despite sustained undetectable levels of plasma viral RNA. The presence of a reservoir of 'covert' virus replication in patients on highly active anti-retroviral therapy has important implications for the clinical management of HIV-1-infected individuals and for the development of virus eradication strategies.  相似文献   

12.
To spread infection, enveloped viruses must bud from infected host cells. Recent research indicates that HIV and other enveloped RNA viruses bud by appropriating the cellular machinery that is normally used to create vesicles that bud into late endosomal compartments called multivesicular bodies. This new model of virus budding has many potential implications for cell biology and viral pathogenesis.  相似文献   

13.
The studies reported herein are the first to document the effect of the in vivo administration of a JAK3 inhibitor for defining the potential role of NK cells during acute SIV infection of a group of 15 rhesus macaques (RM). An additional group of 16 MHC/KIR typed RM was included as controls. The previously optimized in vivo dose regimen (20 mg/kg daily for 35 days) led to a marked depletion of each of the major NK cell subsets both in the blood and gastro-intestinal tissues (GIT) during acute infection. While such depletion had no detectable effects on plasma viral loads during acute infection, there was a significant sustained increase in plasma viral loads during chronic infection. While the potential mechanisms that lead to such increased plasma viral loads during chronic infection remain unclear, several correlates were documented. Thus, during acute infection, the administration of the JAK3 inhibitor besides depleting all NK cell subsets also decreased some CD8+ T cells and inhibited the mobilization of the plasmacytoid dendritic cells in the blood and their localization to the GIT. Of interest is the finding that the administration of the JAK3 inhibitor during acute infection also resulted in the sustained maintenance during chronic infection of a high number of naïve and central memory CD4+ T cells, increases in B cells in the blood, but decreases in the frequencies and function of NKG2a+ NK cells within the GIT and blood, respectively. These data identify a unique role for JAK3 inhibitor sensitive cells, that includes NK cells during acute infection that in concert lead to high viral loads in SIV infected RM during chronic infection without affecting detectable changes in antiviral humoral/cellular responses. Identifying the precise mechanisms by which JAK3 sensitive cells exert their influence is critical with important implications for vaccine design against lentiviruses.  相似文献   

14.
Infection of cultured rat hepatoma cells by mouse mammary tumor virus.   总被引:18,自引:0,他引:18  
A continuous line of buffalo rat hepatoma (HTC) cells has been successfully infected with mouse mammary tumor virus (MMTV) produced by the GR mammary tumor cell line. Uniform infection required initial exposure of the HTC cells to greater than 10(5) MMTV particles per cell. The resultant chronically infected cell population was found to have stably acquired 20-30 copies of MMTV DNA. The infected cells contain viral RNA and express viral antigens; however, very few MMTV particles are released into the culture medium. In spite of the biochemical evidence for infection, we have not detected any alterations in the morphology or growth properties of the infected HTC cells. As is the case in mammary tumor cells, the intracellular concentration of viral RNA is strongly stimulated (50-150 fold) by the synthetic glucorcorticoid, dexamethasone. Thus it appears that the mechanisms by which glucorticoids regulate MMTV gene expression in mouse cells are maintained when this virus infects nonmurine cells.  相似文献   

15.
Natural Killer (NK) cells are important in the immune response to a number of viruses; however, the mechanisms used by NK cells to discriminate between healthy and virus-infected cells are only beginning to be understood. Infection with vaccinia virus provokes a marked increase in the susceptibility of target cells to lysis by NK cells, and we show that recognition of the changes in the target cell induced by vaccinia virus infection depends on the natural cytotoxicity receptors NKp30, NKp44, and NKp46. Vaccinia virus infection does not induce expression of ligands for the activating NKG2D receptor, nor does downregulation of major histocompatibility complex class I molecules appear to be of critical importance for altered target cell susceptibility to NK cell lysis. The increased susceptibility to lysis by NK cells triggered upon poxvirus infection depends on a viral gene, or genes, transcribed early in the viral life cycle and present in multiple distinct orthopoxviruses. The more general implications of these data for the processes of innate immune recognition are discussed.  相似文献   

16.
We studied the temporal succession of vertical profiles of Emiliania huxleyi and their specific viruses (EhVs) during the progression of a natural phytoplankton bloom in the North Sea in June 1999. Genotypic richness was assessed by exploiting the variations in a gene encoding a protein with calcium-binding motifs (GPA) for E.?huxleyi and in the viral major capsid protein gene for EhVs. Using denaturing gradient gel electrophoresis and sequencing analysis, we showed at least three different E.?huxleyi and EhV genotypic profiles during the period of study, revealing a complex, and changing assemblage at the molecular level. Our results also indicate that the dynamics of EhV genotypes reflect fluctuations in abundance of potential E.?huxleyi host cells. The presence and concentration of specific EhVs in the area prior to the bloom, or EhVs transported into the area by different water masses, are significant factors affecting the structure and intraspecific succession of E.?huxleyi during the phytoplankton bloom.  相似文献   

17.
Transmission of Caprine Arthritis Encephalitis virus (CAEV) from the mother to offspring is principally mediated by infected cells from colostrum and milk. The infection of the dam is often sub-clinical, and results in increased cellularity of milk, sometimes exacerbated by bacterial co-infections. Although monocytes are the major viral host cells, several other cell types, including epithelial mammary cells, fibroblasts and endothelial cells show low levels of in vivo infection. In vitro, however, all phenotypes of mammary gland cells are individually highly sensitive to CAEV infection. This suggests that local mechanisms act to control viral expression. Our goal is to analyse the mechanisms regulating local virus infection, including the physiological status of the mammary gland and bacterial co-infections. In this work, we present the development of a model for the in vitro reconstitution of mammary gland tissue using 3D cultures in Matrigel. Mononuclear cells from the blood are added to the 3D cultures in vitro. In these experimental conditions, the mammary cells spontaneously organize into mammospheres. Blood leucocytes migrate into the culture gel, and localize particularly at the periphery of the mammospheres. Mammospheres were susceptible to infection in vitro by CAEV, as shown by a cytopathic effect and expression of late CAEV antigen p30. This model will allow the in vitro study of virus expression, transfer of infection to mammary gland cells and interactions between the mammary gland cells, infected monocytes and immunocompetent cells. It will allow the study of mechanisms participating in the control of passage of pathogens into milk, according to the physiological and CAEV-infection status of the animal, microenvironment and the presence of bacterial co-infections.  相似文献   

18.
For many viruses, primary infection has been shown to prevent superinfection by a homologous second virus. In this study, we investigated superinfection exclusion of bovine viral diarrhea virus (BVDV), a positive-sense RNA pestivirus. Cells acutely infected with BVDV were protected from superinfection by homologous BVDV but not with heterologous vesicular stomatitis virus. Superinfection exclusion was established within 30 to 60 min but was lost upon passaging of persistently infected cells. Superinfecting BVDV failed to deliver a translatable genome into acutely infected cells, indicating a block in viral entry. Deletion of structural protein E2 from primary infecting BVDV abolished this exclusion. Bypassing the entry block by RNA transfection revealed a second block at the level of replication but not translation. This exclusion did not require structural protein expression and was inversely correlated with the level of primary BVDV RNA replication. These findings suggest dual mechanisms of pestivirus superinfection exclusion, one at the level of viral entry that requires viral glycoprotein E2 and a second at the level of viral RNA replication.  相似文献   

19.
The CD8+ T-cell is a key mediator of antiviral immunity, potentially contributing to control of pathogenic lentiviral infection through both innate and adaptive mechanisms. We studied viral dynamics during antiretroviral treatment of simian immunodeficiency virus (SIV) infected rhesus macaques following CD8+ T-cell depletion to test the importance of adaptive cytotoxic effects in clearance of cells productively infected with SIV. As previously described, plasma viral load (VL) increased following CD8+ T-cell depletion and was proportional to the magnitude of CD8+ T-cell depletion in the GALT, confirming a direct relationship between CD8+ T-cell loss and viral replication. Surprisingly, first phase plasma virus decay following administration of antiretroviral drugs was not slower in CD8+ T-cell depleted animals compared with controls indicating that the short lifespan of the average productively infected cell is not a reflection of cytotoxic T-lymphocyte (CTL) killing. Our findings support a dominant role for non-cytotoxic effects of CD8+ T-cells on control of pathogenic lentiviral infection and suggest that cytotoxic effects, if present, are limited to early, pre-productive stages of the viral life cycle. These observations have important implications for future strategies to augment immune control of HIV.  相似文献   

20.
During primary HIV infection the viral load in plasma increases, reaches a peak, and then declines. Phillips has suggested that the decline is due to a limitation in the number of cells susceptible to HIV infection, while other authors have suggested that the decline in viremia is due to an immune response. Here we address this issue by developing models of primary HIV-1 infection, and by comparing predictions from these models with data from ten anti-retroviral, drug-naive, infected patients. Applying nonlinear least-squares estimation, we find that relatively small variations in parameters are capable of mimicking the highly diverse patterns found in patient viral load data. This approach yields an estimate of 2.5 days for the average lifespan of productively infected cells during primary infection, a value that is consistent with results obtained by drug perturbation experiments. We find that the data from all ten patients are consistent with a target-cell-limited model from the time of initial infection until shortly after the peak in viremia. However, the kinetics of the subsequent fall and recovery in virus concentration in some patients are not consistent with the predictions of the target-cell-limited model. We illustrate that two possible immune response mechanisms, cytotoxic T lymphocyte destruction of infected target cells and cytokine suppression of viral replication, could account for declines in viral load data not predicted by the original target-cell-limited model. We conclude that some additional process, perhaps mediated by CD8+ T cells, is important in at least some patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号