首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinning an elastic ribbon of spider silk   总被引:3,自引:0,他引:3  
The Sicarid spider Loxosceles laeta spins broad but very thin ribbons of elastic silk that it uses to form a retreat and to capture prey. A structural investigation into this spider's silk and spinning apparatus shows that these ribbons are spun from a gland homologous to the major ampullate gland of orb web spiders. The Loxosceles gland is constructed from the same basic parts (separate transverse zones in the gland, a duct and spigot) as other spider silk glands but construction details are highly specialized. These differences are thought to relate to different ways of spinning silk in the two groups of spiders. Loxosceles uses conventional die extrusion, feeding a liquid dope (spinning solution) to the slit-like die to form a flat ribbon, while orb web spiders use an extrusion process in which the silk dope is processed in an elongated duct to produce a cylindrical thread. This is achieved by the combination of an initial internal draw down, well inside the duct, and a final draw down, after the silk has left the spigot. The spinning mechanism in Loxosceles may be more ancestral.  相似文献   

2.
Strength and structure of spiders' silks.   总被引:6,自引:0,他引:6  
Spider silks are composite materials with often complex microstructures. They are spun from liquid crystalline dope using a complicated spinning mechanism which gives the animal considerable control. The material properties of finished silk are modified by the effects of water and other solvents, and spiders make use of this to produce fibres with specific qualities. The surprising sophistication of spider silks and spinning technologies makes it imperative for us to understand both material and manufacturing in nature before embarking on the commercialization of biotechnologically modified silk dope.  相似文献   

3.
Spider silks are composite materials with often complex microstructures. They are spun from liquid crystalline dope using a complicated spinning mechanism which gives the animal considerable control. The material properties of finished silk are modified by the effects of water and other solvents, and spiders make use of this to produce fibres with specific qualities. The surprising sophistication of spider silks and spinning technologies makes it imperative for us to understand both material and manufacturing in nature before embarking on the commercialization of biotechnologically modified silk dope.  相似文献   

4.
Raman spectroscopy has long been proved to be a useful tool to study the conformation of protein-based materials such as silk. Thanks to recent developments, linearly polarized Raman spectromicroscopy has appeared very efficient to characterize the molecular structure of native single silk fibers and spinning dopes because it can provide information relative to the protein secondary structure, molecular orientation, and amino acid composition. This review will describe recent advances in the study of the structure of silk by Raman spectromicroscopy. A particular emphasis is put on the spider dragline and silkworm cocoon threads, other fibers spun by orb-weaving spiders, the spinning dope contained in their silk glands and the effect of mechanical deformation. Taken together, the results of the literature show that Raman spectromicroscopy is particularly efficient to investigate all aspects of silk structure and production. The data provided can lead to a better understanding of the structure of the silk dope, transformations occurring during the spinning process, and structure and mechanical properties of native fibers.  相似文献   

5.
We report the results of an investigation into the rheology of solutions of natural spider silk dope (spinning solution). We demonstrate that dilute dope solutions showed only shear thinning as the shear rate increased while more concentrated solutions showed an initial shear thinning followed by a shear thickening and a subsequent decline in viscosity. The critical shear rate for shear thickening depended on dope concentration and was very low in concentrated solutions. This helps to explain how spiders are able to spin silk at very low draw rates and why they use a very concentrated dope solution. We also show that the optimum shear rate for shear thickening in moderately concentrated solutions occurred at pH 6.3 close to the observed pH at the distal end of the spider's spinning duct. Finally, we report that the addition of K(+) ions to dilute dope solutions produced a spontaneous formation of nanofibrils that subsequently aggregated and precipitated. This change was not seen after the addition of other common cations. Taken together, these observations support the hypothesis that the secretion of H(+) and K(+) by the spider's duct together with moderate strain rates produced during spinning induce a phase separation in the silk dope in which the silk protein (spidroin) molecules are converted into insoluble nanofibrils.  相似文献   

6.
Araneomorph spiders from many different families show some regionaldifferentiation of the duct which carries the drag-line silk,but only in the orb-web spiders is there a well-defined controlvalve. This valve, and its associated muscles, is described for Araneusdiadematus (Argiopidae), an ecribellate spider, and is comparedwith that found in Uloborus octonarius (Uloboridae), a cribellatespider. It is suggested that the remarkable similarity betweenthe valves in these two groups implies evolutionary convergence. Some evidence is presented which suggests that variations inbody pressure are used to control the drag-line spinning, atleast in the more primitive Araneomorphs.  相似文献   

7.
Spider dragline silk is formed as the result of a remarkable transformation in which an aqueous dope solution is rapidly converted into an insoluble protein filament with outstanding mechanical properties. Microscopy on the spinning duct in Nephila edulis spiders suggests that this transformation involves a stress-induced formation of anti-parallel beta-sheets induced by extensional flow. Measurements of draw stress at different draw rates during silking confirm that a stress-induced phase transition occurs.  相似文献   

8.
Behavioural and biomaterial coevolution in spider orb webs   总被引:1,自引:0,他引:1  
Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials—silks—are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co‐evolve to fine‐tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb‐weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable ‘sparser’ architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine‐tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin.  相似文献   

9.
Spider silk is renowned for its high tensile strength, extensibility and toughness. However, the variability of these material properties has largely been ignored, especially at the intra-specific level. Yet, this variation could help us understand the function of spider webs. It may also point to the mechanisms used by spiders to control their silk production, which could be exploited to expand the potential range of applications for silk. In this study, we focus on variation of silk properties within different regions of cobwebs spun by the common house spider, Achaearanea tepidariorum. The cobweb is composed of supporting threads that function to maintain the web shape and hold spiders and prey, and of sticky gumfooted threads that adhere to insects during prey capture. Overall, structural properties, especially thread diameter, are more variable than intrinsic material properties, which may reflect past directional selection on certain silk performance. Supporting threads are thicker and able to bear higher loads, both before deforming permanently and before breaking, compared with sticky gumfooted threads. This may facilitate the function of supporting threads through sustained periods of time. In contrast, sticky gumfooted threads are more elastic, which may reduce the forces that prey apply to webs and allow them to contact multiple sticky capture threads. Therefore, our study suggests that spiders actively modify silk material properties during spinning in ways that enhance web function.  相似文献   

10.
The process by which spiders make their mechanically superior fiber involves removal of solvent (water) from a concentrated protein solution while the solution flows through a progressively narrowing spinning canal. Our aim was to determine a possible mechanism of spider water removal by using a computational model. To develop appropriate computational techniques for modeling of solvent removal during fiber spinning, a study was first performed using a synthetic solution. In particular, the effect of solvent removal during elongational flow (also exhibited in the spinning canal of the spider) on fiber mechanical properties was examined. The study establishes a model for solvent removal during dry spinning of synthetic fibers, assuming that internal diffusion governs solvent removal and that convective resistance is small. A variable internal solvent diffusion coefficient, dependent on solvent concentration, is also taken into account in the model. An experimental setup for dry (air) spinning was used to make fibers whose diameter was on the order of those made by spiders (approximately 1 microm). Two fibers of different thickness, corresponding to different spinning conditions, were numerically modeled for solvent removal and then mechanically tested. These tests showed that the thinner fiber, which lost more solvent under elongational flow, had 5-fold better mechanical properties (elastic modulus of 100 MPa and toughness of 15 MJ/m3) than the thicker fiber. Even though the mechanical properties were far from those of dragline spider silk (modulus of 10 GPa and toughness of 150 MJ/m3), the experimental methodology and numerical principles developed for the synthetic case proved to be valuable when establishing a model for the Nephila spinning process. In this model, an assumption of rapid convective water removal at the spinning canal wall was made, with internal diffusion of water through the fiber as the governing process. Then the diffusion coefficient of water through the initial spinning solution, obtained ex vivo from the Nephila clavipes major ampullate gland, was determined and incorporated into the numerical procedure, along with the wall boundary conditions and canal geometry. Also, a typical fiber reeling speed during web making, as well as the assumption of a dry exiting fiber, were included in the model. The results show that a cross-section of spinning solution (dope), which is initially 70% water, spends 19 s in the spinning canal in order to emerge dry. While the dope cross-section traverses the canal, its velocity increases from 0.37 mm/s at the entrance to 12.5 mm/s at the canal exit. The obtained results thus indicate that simple diffusion, along with the dry wall boundary condition, is a viable mechanism for water removal during typical Nephila fiber spinning.  相似文献   

11.
The C-termini of Spidroins produced in the major and minor ampullate glands of spiders are highly conserved. Despite this conservation, no corresponding peptides have been identified in the spinning dopes or the silk filaments so far. To prove their presence or absence, polyclonal antibodies derived against fusion proteins containing the conserved C-terminal regions of both Spidroin 1 and 2 from the spider Nephila clavipes were generated. The antibodies reacted with high molecular weight polypeptides of the corresponding gland extracts and solubilized major ampullate filament and in addition to filament cross-sections. This demonstrates the existence of C-terminal specific peptides in the spinning dope and the mature Spidroins. Both the fusion proteins as well as the proteins contained within the gland lumen showed a reduction in their size under reducing conditions indicating the presence of disulfide bonds. Their high conservation and the biochemical data suggest crucial roles the C-termini play in the formation and/or structure of the corresponding silk filaments.  相似文献   

12.
Many spiders depend upon webs to capture prey. Web function results from architecture and mechanical performance of the silk. We hypothesized that the common house spider, Achaearanea tepidariorum, would alter the mechanical performance of its cobweb in response to different prey by varying the structural and material properties of its silk. We fed spiders either large, high kinetic energy crickets or small, low kinetic energy pillbugs for 1 week and then examined their freshly spun silk. We separated mechanical performance into structural and material effects. We measured both types of properties for silk threads collected directly from cobwebs to test for "tuning" of silk performance to different aspects of prey capture. We compared silk from two different functional regions of the cobweb-sticky gumfooted threads that adhere directly to prey and supporting threads that maintain web integrity. Supporting threads from cricket-fed spiders were stiffer and tougher than supporting threads from pillbug-fed spiders. Both types of silk from cricket-fed spiders broke at higher loads than silk from pillbug-fed spiders. We explain this variation using a simple model of forces exerted by prey and spiders on single threads and propose potential mechanisms for this change in material properties. Two alternative, nonexclusive, hypotheses are suggested by our data. Spiders may tune silk to different types of prey by spinning threads that are able to hold prey without deforming permanently. Alternatively, as spider's body mass differed dramatically between the two feeding regimes, spiders may tune silk to their own body mass.  相似文献   

13.
The spinning process of spiders can modulate the mechanical properties of their silk fibers. It is therefore of primary importance to understand what are the key elements of the spider spinning process to develop efficient industrial spinning processes. We have exhaustively investigated the native conformation of major ampullate silk (MaS) proteins by comparing the content of the major ampullate gland of Nephila clavipes, solubilized MaS (SolMaS) fibers and the recombinant proteins rMaSpI and rMaSpII using (1) H solution NMR spectroscopy. The results indicate that the protein secondary structure is basically identical for the recombinant protein rMaSpI, SolMaS proteins, and the proteins in the dope, and corresponds to a disordered protein rich in 3(1) -helices. The data also show that glycine proton chemical shifts of rMaSpI and SolMaS are affected by pH, but that this change is not due to a modification of the secondary structure. Using a combination of NMR and dynamic light scattering, we have found that the spectral alteration of glycine is concomitant to a modification of the hydrodynamical diameter of recombinant and solubilized MaS. This led us to suggest new potential roles for the pH acidification in the spinning process of MaS proteins.  相似文献   

14.
15.
As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks.  相似文献   

16.
Silk is the most recognizable trait of spiders, and silk use has changed throughout spider evolutionary history. While morphology of the adult silk spigot has been a useful character for systematics, few studies have examined the ontogeny of the spinning apparatus, and none of these included cribellate spiders. Here, we report the first published full ontogeny of the spinning apparatus of a cribellate spider, Tengella perfuga. We found the presence of expected spigots: major ampullate gland and piriform gland spigots on the anterior lateral spinneret, minor ampullate gland and aciniform gland spigots on the posterior median spinneret, and aciniform gland spigots on the posterior lateral spinneret. Females, but not males, possessed cylindrical gland spigots on both the posterior median and lateral spinnerets. Spiderlings did not possess a functioning cribellum until the third instar. The cribellum grew with increasing numbers of spigots, but functionality was lost in adult males. Most intriguingly, second instars possessed a distinct triad of pre‐spigots on the posterior lateral spinneret. From the third instar onward, these structures formed the modified spigot along with two flanking spigots (in females) or formed nubbins (in males). We suggest that the modified spigot serves as the source of axial lines in the cribellate silk produced in T. perfuga. We also compare spigot ontogeny from previous studies of ecribellate spiders. These comparisons warrant further exploration using the recent spider tree of life in a phylogenetic comparative analysis of spigot ontogeny datasets, which could yield evidence for homologous spigots across the Araneomorphae, notably the Araneoidea and the Retrolateral Tibial Apophysis (RTA) clades.  相似文献   

17.
Hexagonal columnar liquid crystal in the cells secreting spider silk   总被引:3,自引:0,他引:3  
Knight D  Vollrath F 《Tissue & cell》1999,31(6):617-620
The liquid crystallinity of spider dragline silk dope is thought to be important for both the spinning process and the extreme mechanical properties of the final thread. Although the formation of the liquid crystalline units is poorly understood, it has been suggested that spider silk proteins are secreted in a random coil and then aggregate end-to-end into rod-shaped units to form supramolecular liquid crystals. However, evidence presented here from transmission electron microscopy indicates that coat protein of the dragline silk of a Nephila spider is stored as hexagonal columnar liquid crystals within the intracellular secretory vesicles. This implies that this component is already folded into short rods within the gland cells and forms molecular rather than supramolecular liquid crystals.  相似文献   

18.
蜘蛛丝作为一种具有优良机械性能的天然动物蛋白纤维,其特有的结构和机械性能与其生物学功能密切相关。由大壶状腺纺出的拖牵丝在蜘蛛的行走、建网、捕食、逃生、繁殖等多种生命活动中均发挥了重要的功能,其机械性能会受到多种内外因素相互作用的影响。本文对在不同体重、不同猎物饲养和不同营养状态3种条件下人工抽出的悦目金蛛(Argiope amoena)拖牵丝与其不同单丝间的力学性能进行了比较研究。结果表明,悦目金蛛拖牵丝的力学性能在组间、组内不同个体,以及同一个体不同丝纤维间变异都较大。随着蜘蛛个体的增大,蛛丝横截面直径逐渐增大,这会使得蛛丝的力学性能更好,便于作为救命索的拖牵丝在遇到危险时承受蜘蛛体重;蜘蛛在经过1个月的饥饿后,蛛丝在屈服点附近的力学性能并未发生显著变化,而断裂点应变和断裂能均显著减小,同时也表明无论对于作为救命索还是网丝,拖牵丝的弹性形变性能在与蛛丝相关的微观进化中要优先于塑性形变。这是蜘蛛在能量摄入受到限制时对拖牵丝的投入权衡的结果。  相似文献   

19.
The silk spinning apparatus in the crab spider, Misumenops tricuspidatus was studied with the field emission scanning electron microscope (FESEM) and the main microstructural characteristics of the silk glands are presented. In spite of the fact that the crab spiders do not spin webs to trap a prey, they also have silk apparatus even though the functions are not fully defined. The crab spider, Misumenops tricuspidatus possesses only three types of silk glands which connected through the typical spinning tubes on the spinnerets. The spinning apparatus of Misumenops closely corresponds to that of wandering spiders such as jumping spiders or wolf spiders except some local variations. Anterior spinnerets comprise 2 pairs of the ampullates and 48 (±5) pairs of pyriform glands. Another 2 pairs of ampullate glands and nearly 20 (±3) pairs of aciniform glands were connected on the middle spinnerets. Additional 50 (±5) pairs of the aciniform glands were connected on the posterior spinnerets. The aggregate glands and the flagelliform glands which have the function of sticky capture thread production in orb‐web spiders as well as the tubuliform glands for cocoon production in females were not developed at both sexes of this spider, characteristically.  相似文献   

20.
Spider silk is a high-performance biomaterial with exceptional mechanical properties and over half a century of research into its mechanics, structure, and biology. Recent research demonstrates that it is a highly variable class of materials that differs across species and individuals in complex and interesting ways. Here, we review recent literature on mechanical variation and evolution in spider silk. We then present new data on material properties of silk from nine species of spiders in the Mesothelae and Mygalomorphae, the two basal clades of spiders. Silk from spiders in the Araneomorphae (true spiders where most previous research on silk has focused) is significantly stronger and therefore much tougher than the silk produced by spiders in the basal groups. These data support the hypothesis that the success and diversity seen in araneomorph spiders is associated with the evolution of this high-performance fiber. This comparative approach shows promise as a way to understand complex, high-performance biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号