首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A theory of 1f and conductance noise is given for ionic channels in nerve membrane. The theory is based on the assumption that the channels are in constant, stochastically independent, rotational motion within a fluid bilayer membrane. The resulting expression for the current noise power density S contains a conduction noise term consistent withStevens (1972) and Hill & Chen (1972) and a 1f noise term consistent with Lundstrom & McQueen (1974) and Clay & Shlesinger (1976). The expression for S also contains a third term which is the spectrum of the product of the single channel conduction noise and 1f noise correlation functions. This term is independent of the number of channels in the membrane, R. Consequently, the expression for S effectively reduces to a sum of 1f and conduction noise for R 10–100 which is in agreement with noise measurements on squid axon. The theory is applied in detail to potassium squid noise measurements of Conti, DeFelice & Wanke (1975) using the stochastic analysis of single file ion motion developed in our previous paper (Clay & Shlesinger (1976)).  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号