首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In many pathogenic bacteria, genes that encode virulence factors are located in the genomes of prophages. Clearly bacteriophages are important vectors for disseminating virulence genes, but, in addition, do phage regulatory circuits contribute to expression of these genes? Phages of the lambda family that have genes encoding Shiga toxin are found in certain pathogenic Escherichia coli (known as Shiga toxin producing E. coli) and the filamentous phage CTXphi, that carries genes encoding cholera toxin (CTX), is found in Vibrio cholerae. Both the lambda and CTXphi phages have repressor systems that maintain their respective prophages in a quiescent state, and in both types of prophages this repressed state is abolished when the host cell SOS response is activated. In the lambda type of prophages, only binding of the phage-encoded repressor is involved in repression and this repressor ultimately controls Shiga toxin production and/or release. In the CTXphi prophage, binding of LexA, the bacterial regulator of SOS, in addition to binding of the repressor is involved in repression; the repressor has only limited control over CTX production and has no influence on its release.  相似文献   

6.
7.
8.
CodY is a global regulatory protein that was first discovered in Bacillus subtilis, where it couples gene expression to changes in the pools of critical metabolites through its activation by GTP and branched-chain amino acids. Homologs of CodY can be found encoded in the genomes of nearly all low-G+C gram-positive bacteria, including Staphylococcus aureus. The introduction of a codY-null mutation into two S. aureus clinical isolates, SA564 and UAMS-1, through allelic replacement, resulted in the overexpression of several virulence genes. The mutant strains had higher levels of hemolytic activity toward rabbit erythrocytes in their culture fluid, produced more polysaccharide intercellular adhesin (PIA), and formed more robust biofilms than did their isogenic parent strains. These phenotypes were associated with derepressed levels of RNA for the hemolytic alpha-toxin (hla), the accessory gene regulator (agr) (RNAII and RNAIII/hld), and the operon responsible for the production of PIA (icaADBC). These data suggest that CodY represses, either directly or indirectly, the synthesis of a number of virulence factors of S. aureus.  相似文献   

9.
A Vibrio cholerae tolC mutant showed increased toxT expression in M9 medium, but not in the presence of four amino acids that induce cholera toxin production, and in LB with high osmolarity but not high pH or temperature. TolC did not affect expression of other regulatory genes in the ToxR regulon.  相似文献   

10.
The PglZ family of proteins belongs to the alkaline phosphatase superfamily, which consists of metallohydrolases with limited sequence identity but similar metal-coordination architectures in otherwise divergent active sites. Proteins with a well-defined PglZ domain are ubiquitous among prokaryotes as essential components of BREX phage defence systems and two-component systems (TCSs). Whereas other members of the alkaline phosphatase superfamily are well characterized, the activity, structure and biological function of PglZ family proteins remain unclear. We therefore investigated the structure and function of PorX, an orphan response regulator of the Porphyromonas gingivalis TCS containing a putative PglZ effector domain. The crystal structure of PorX revealed a canonical receiver domain, a helical bundle, and an unprecedented PglZ domain, similar to the general organization of the phylogenetically related BREX-PglZ proteins. The PglZ domain of PorX features an active site cleft suitable for large substrates. An extensive search for substrates revealed that PorX is a phosphodiesterase that acts on cyclic and linear oligonucleotides, including signalling molecules such as cyclic oligoadenylates. These results, combined with mutagenesis, biophysical and enzymatic analysis, suggest that PorX coordinates oligonucleotide signalling pathways and indirectly regulates gene expression to control the secretion of virulence factors.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
  • 1.1. Changes in turgor, in cell volume, in membrane potential, in intracellular ionic activities and, more recently, in spontaneous electrical activity have been reported to be causally linked to the expression of specific genes.
  • 2.2. As a result, it has become clear that changes in membrane properties and/or in the intracellular “ionic environment” can play an important role in generating cell type specific physiological responses which indirectly—or maybe directly—affect gene expression.
  • 3.3. Possible targets of the ionic “environment” are: the selective transport across biological membranes; the activity of certain (regulatory) enzymes; the conformation of some (regulatory) proteins; of chromatin; of the cytoskeleton; of the nuclear matrix; the association of the cytoskeleton with plasmamembrane proteins or RNA; the association chromatin-nuclear matrix; protein-DNA and protein-protein interactions etc. All these sites may be instrumental to “fine or coarse” tuning of gene expression.
  • 4.4. The exact mechanisms by which changes in intracellular ionic environment are transduced, directly or indirectly, into alterations of the activity of trans-acting factors have not yet been fully uncovered. Changes in the degree of phosphorylation of regulatory proteins and/or of trans -acting factors may provoke fine tuning effects on cell type specific gene expression activity.
  • 5.5. The intranuclear ionic environment is difficult to measure in an exact way. It can be influenced in a number of ways. The location of a gene, as determined by the position of the nucleus in the cytoplasm and by the association of chromatin to the nuclear matrix may be especially important in cells which can generate some type of intracellular gradient or in excitable cells.
  • 6.6. In some somatic cell types—germinal vesicles may behave differently—the intranuclear inorganic ionic “environment” has been reported to be distinct from the cytoplasmic one. This challenges the widespread assumption that the nuclear envelope is always freely permeable to small molecules and inorganic ions.
  • 7.7. It can be expected that the fast progress in the cloning of “electrically” controlled genes, in the identification of trans-acting factors, in their mode of interaction with genes and in the precise localization of genes within the nucleus may soon lead to substantial progress in this domain.
  相似文献   

20.
Feedback control of gene expression   总被引:24,自引:0,他引:24  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号