首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osmotic Adjustment and Stomatal Response to Water Deficits in Maize   总被引:1,自引:1,他引:0  
A pot experiment was carried out using five maize {Zea maysL.) cultivars under three soil moisture levels (MPa 0 to –0.05,–0.3 to –0.9 and –1.2 to –1.5) to investigatethe effects of water deficits on osmotic adjustment and stomatalconductance. The degree of leaf rolling and the sugar and nutrientconcentrations in leaf cell sap were measured. Leaf water potential and osmotic potential decreased and stomatalconductance decreased with increasing water deficits. Stomatalconductance correlated positively with leaf water potentialand osmotic potential. Degree of leaf rolling was lower in cultivarswhich maintained higher turgor. Osmotic adjustment of 0.08 to0.43 MPa was found under the lowest soil moisture level in fivecultivars used. Sugar and K were the major osmotic substancesin the maize plant. Sugar, K and Mg concentrations increasedunder water deficit, and correlated negatively with a decreasein osmotic potential. Key words: Zea mays L., leaf water relations, leaf rolling, osmotic adjustment, stomatal conductance, water deficit  相似文献   

2.
A field experiment was conducted to investigate the effect ofK nutrition under water stress conditions on cell membrane stabilitymeasured by the polyethylene glycol test, plant growth, internalplant water relations and solute and mineral concentrationsin maize (Zea mays L.). Water-stressed plants showed greateradaptation to water deficits at higher K levels. Cell membranestability increased, leaf water potential and osmotic potentialdecreased, turgor potential increased and stomatal resistancedecreased with increasing K nutrition. Osmotic adjustment wasevident and it may have been influenced by increased K+ concentrationsin leaf tissues with increasing K nutrition. Higher leaf thicknessand higher leaf water content were observed at higher K levels.Results suggested that higher supplies of K nutrition may increaseplant production during periods of water stress. Key words: Zea mays L., cell membrane stability, leaf water potential, osmotic adjustment, osmotic potential, potassium nutrition, water stress  相似文献   

3.
The dynamics of stomatal resistance and osmotic adjustment in response to plant water deficits and stage of physiological development was studied in the leaves of spring wheat ( Triticum aestivum L., GWO 1809). Plants were germinated and grown in pots in a growth chamber at the Duke University Phytotron to four physiological stages of development (4th leaf, 7th leaf, anthesis, and soft dough), during which time stomatal resistance, total water potential and osmotic potential were measured on the last fully developed leaf of water stressed and non-stressed plants. Pressure potential was obtained by difference. Stomatal closure of the abaxial and adaxial surfaces were independent of each other, each having a different critical total water potential. The total water potential required to close the stomata on the last fully developed leaf were different at different stages of physiological development, decreasing as the plants grew older. The development of osmoregulation in wheat allows the closure of stomata during the vegetative stage at a high total water potential, but insures that stomata remain open from anthesis through the ear filling period to a lower total water potential.  相似文献   

4.
Growth rates of seasonal leaf flushes of ‘Valencia’orange [Citrus sinensis (L.) Osbeck] were measured and waterrelations characteristics of young (new) and over-wintered (old)citrus leaves were compared. New flush leaves had lower specificleaf weights and lower midday leaf water potentials than comparablyexposed old leaves. Spring and summer flush new leaves had higherosmotic potentials than old leaves. These differences becamenon-significant as the new leaves matured. During summer conditions,water-stressed new leaves reached zero turgor and stomatal conductancealso began to decrease in them at higher leaf water potentialsthan in old leaves. Old leaves were capable of maintaining openstomata at lower leaf water potentials. Opened flowers and newflush leaves lost more water, on a dry weight basis, than flowerbuds, fruit or mature leaves. The results illustrate differencesin leaf water potential and stomatal conductance which can beattributed to the maintenance of leaf turgor by decreases inleaf osmotic potentials as leaves mature. These changes in citrusleaf water relations are especially important since water stressresulting from high water loss rates of new tissues could reduceflowering and fruit set. Citrus sinensis (L.) Osbeck, orange, Citrus paradisi Macf., grapefruit, growth rate, leaf water relations, osmotic potential, water potential, stomatal conductance  相似文献   

5.
Summary Water and nitrogen regimes of Larrea tridentata shrubs growing in the field were manipulated during an annual cycle. Patterns of leaf water status, leaf water relations characteristics, and stomatal behavior were followed concurrently. Large variations in leaf water status in both irrigated and nonirrigated individuals were observed. Predawn and midday leaf water potentials of nonirrigated shrubs were lowest except when measurements had been preceded by significant rainfall. Despite the large seasonal variation in leaf water status, reasonably constant, high levels of turgor were maintained. Pressure-volume curve analysis suggested that changes in the bulk leaf osmotic potential at full turgor were small and that nearly all of the turgor adjustment was due to tissue elastic adjustment. The increase in tissue elasticity with increasing water deficit manifested itself as a decrease in the relative water content at zero turgor and as a decrease in the tissue bulk elastic modulus. Because of large hydration-induced displacement in the osmotic potential and relative water content at zero turgor, it was necessary to use shoots in their natural state of hydration for pressure-volume curve determinations. Large diurnal and seasonal differences in maximum stomatal conductance were observed, but could not easily be attributed to variations in leaf water potential or leaf water relations characteristics such as the turgor loss point. The single factor which seemed to account for most of the diurnal and seasonal differences in maximum stomatal conductance between individual shrubs was an index of soil/root/ shoot hydraulic resistance. Daily maximum stomatal conductance was found to decrease with increasing soil/root/ shoot hydraulic resistance. This pattern was most consistent if the hydraulic resistance calculation was based on an estimate of total canopy transpiration rather than the more commonly used transpiration per unit leaf area. The reasons for this are discussed. It is suggested that while stomatal aperture necessarily represents a major physical resistance controlling transpiration, plant hydraulic resistance may represent the functional resistance through its effects on stomatal aperture.  相似文献   

6.
Seasonal Changes in the Cytokinin Content of Ginkgo biloba Leaves   总被引:1,自引:0,他引:1  
Young growth-chamber-grown cotton plants were subjected to a series of eight periods of soil water stress, which served as a preconditioning treatment. After preconditioning, water was withheld and changes in the stomatal resistance and leaf water potential were determined and compared with similar well watered control plants. The stomatal response of stress preconditioned plants adjusted such that the diffusion resistance of the lower surface of the leaf did not reach a value greater than 20 s cm?1 until the leaf water potential dropped 14 bars below that required to reach the same resistance on previously unstressed plants. The resistance—leaf water potential relation for the adaxial surface was unaltered by the preconditioning treatment. Adjustment of the osmotic potential of the guard cells on the abaxial surface provides at least a partial explanation of this change in response. The lack of adjustment of stomatal response on the adaxial surface of the leaves was correlated with a lack of adjustment in osmotic potential of guard cells on that surface.  相似文献   

7.
Apple trees are very drought tolerant, having the capability to grow and carry on photosynthesis even at low water potentials. Much of the tolerance is due to the ability of apple leaves to maintain turgor potentials at levels conducive to growth and stomatal opening. Diurnally, leaf turgor is maintained through decreases in osmotic potentials (due to active solute accumulation), osmotic adjustment, or to concentration of solutes via tissue water loss. These two processes combined may decrease osmotic potentials by as much as 1.65 MPn during the day. Seasonally, osmotic potentials remain fairly constant, but leaf elasticity increases, allowing growth to continue and stomata to remain open us water and turgor potentials become progressively lower. Release of stored water from plant tissues to the transpiration stream is another means of preventing water potentials from reaching critical values for stomatal closure. A combination of a number of these physiological adaptations may account for much of the drought tolerance in apple trees.  相似文献   

8.
Leaf age and salinity influence water relations of pepper leaves   总被引:2,自引:0,他引:2  
Plant growth is reduced under saline conditions even when turgor in mature leaves is maintained by osmotic adjustment. The objective of this study was to determine if young leaves from salt-affected plants were also osmotically adjusted. Pepper plants (Capsicum annuum L. cv. California Wonder) were grown in several levels of solution osmotic potential and various components of the plants' water relations were measured to determine if young, rapidly growing leaves could accumulate solutes rapidly enough to maintain turgor for normal cell enlargement. Psychrometric measurements indicated that osmotic adjustment is similar for both young and mature leaves although osmotic potential is slightly lower for young leaves. Total water potential is also lower for young leaves, particularly at dawn for the saline treatments. The result is reduced turgor under saline conditions at dawn for young but not mature leaves. This reduced turgor at dawn, and presumably low night value, is possibly a cause of reduced growth under saline conditions. No differences in leaf turgor occur at midday. Porometer measurements indicated that young leaves at a given salinity level have a higher stomatal conductance than mature leaves, regardless of the time of day. The result of stomatal closure is a linear reduction of transpiration.  相似文献   

9.
Potted two-year-old lemon plants (Citrus limon (L.) Burm. fil.) cv. Fino, growing under field conditions were subjected to drought by withholding irrigation for 13 d. After that, plants were re-irrigated and the recovery was studied for 5 d. Control plants were daily irrigated maintaining the soil matric potential at about -30 kPa. Young leaves of control plants presented higher leaf conductance (g1) and lower midday leaf water potential (Ψmd) than mature ones. Young leaves also showed higher leaf water potential at the turgor loss point (Ψtlp) than mature leaves. In both leaf types g1 decreased with increased vapour pressure deficit of the atmosphere. From day 1 of the withholding water, predawn and midday leaf water potentials (Ψpd and Ψmd) decreased, reaching in both cases minimum values of -5.5 MPa, with no significant differences between mature and young leaves. Water stress induced stomatal closure, leaf rolling and partial defoliation. No osmotic adjustment was found in response to water stress in either leaf type, but both were able to enhance the cell wall elasticity (elastic adjustment). After rewatering, leaf water potential recovered quickly (within 2 d) but g1 did not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Seasonal and diurnal measurements of leaf water potential (ψ1), relative water content (RWC) and stomatal conductance (gs) were made in the field on 19-year old Prunus salicina (L.) cv. Santa Rosa, a deciduous fruit tree species, irrigated with 3 different concentrations of saline water over a 3 year period (1985-1987). With the exception of stage III of fruit growth, little or no treatment difference in Φ1, leaf turgor potential (Φp), or RWC was noted during the day. Seasonal averages of morning (0700-0900) and afternoon (1500-1700) Φp did not decline with increasing salinity, indicating long-term osmotic adjustment in this species. Maintenance of leaf water status under saline conditions was in part a consequence of increased stomatal closure, with a subsequent reduction in leaf transpiration rate. However, during stage III of fruit growth, an increase in mean afternoon (1200-1700) stomatal conductance of 26-117%, independent of salinity treatment, was observed in 1985 and again in 1987. Higher conductance values during this period may be associated with rapid fruit expansion and greater assimilate demand. The observed increase in conductance resulted in greater leaf water loss and larger measured differences in midday ψ1 between salinity treatments. This research indicates that for Prunus salicina in the field, salinity stress resulted in leaf water deficits only during the final period of fruit expansion and ripening.  相似文献   

11.
Plant water status, leaf tissue pressure-volume relationships, and photosynthetic gas exchange were monitored in five coffee (Coffea arabica L.) cultivars growing in drying soil in the field. There were large differences among cultivars in the rates at which leaf water potential (ΨL) and gas exchange activity declined when irrigation was discontinued. Pressure-volume curve analysis indicated that increased leaf water deficits in droughted plants led to reductions in bulk leaf elasticity, osmotic potential, and in the ΨL at which turgor loss occurred. Adjustments in ΨL at zero turgor were not sufficient to prevent loss or near loss of turgor in three of five cultivars at the lowest values of midday ΨL attained. Maintenance of protoplasmic volume was more pronounced than maintenance of turgor as soil drying progressed. Changes in assimilation and stomatal conductance were largely independent of changes in bulk leaf turgor, but were associated with changes in relative symplast volume. It is suggested that osmotic and elastic adjustment contributed to maintenance of gas exchange in droughted coffee leaves probably through their effects on symplast volume rather than turgor.  相似文献   

12.
Water relations and photosynthetic characteristics of plants of Lycium nodosum grown under increasing water deficit (WD), saline spray (SS) or saline irrigation (SI) were studied. Plants of this perennial, deciduous shrub growing in the coastal thorn scrubs of Venezuela show succulent leaves which persist for approx. 1 month after the beginning of the dry season; leaf succulence is higher in populations closer to the sea. These observations suggested that L. nodosum is tolerant both to WD and salinity. In the glasshouse, WD caused a marked decrease in the xylem water potential (psi), leaf osmotic potential (psi(s)) and relative water content (RWC) after 21 d; additionally, photosynthetic rate (A), carboxylation efficiency (CE) and stomatal conductance (gs) decreased by more than 90 %. In contrast, in plants treated for 21 d with a foliar spray with 35 per thousand NaCl or irrigation with a 10 % NaCl solution, psi and RWC remained nearly constant, while psi(s) decreased by 30 %, and A, CE and gs decreased by more than 80 %. An osmotic adjustment of 0.60 (SS) and 0.94 MPa (SI) was measured. Relative stomatal and mesophyll limitations to A increased with both WD and SS, but were not determined for SI-treated plants. No evidence of chronic photoinhibition due to any treatment was observed, since maximum quantum yield of PSII, Fv/Fm, did not change with either drought in the field or water or salinity stress in the glasshouse. Nevertheless, WD and SI treatments caused a decrease in the photochemical (qP) and an increase in the non-photochemical (qN) quenching coefficients relative to controls; qN was unaffected by the SS treatment. The occurrence of co-limitation of A by stomatal and non-stomatal factors in plants of L. nodosum may be associated with the extended leaf duration under water or saline stress. Additionally, osmotic adjustment may partly explain the relative maintenance of A and gs in the SS and SI treatments and the tolerance to salinity of plants of this species in coastal habitats.  相似文献   

13.
Blum, A., Mayer, J. and Golan, G. 1988. The effect of grainnumber per ear (sink size) on source activity and its water-relationsin wheat.–J. exp. Bot. 39: 106–114. Work was done to evaluate the nature of sink-source relationshipsin wheat (Triticum aestivum L.), when the strength of the sinkwas modified by the removal of half of the grain from the earat about anthesis. The main hypothesis was that sink-sourcerelationship would be modified by water stress and that a weakersink would improve the drought resistance of the source. Two experiments were performed. The first experiment evaluatedthe effect of de-graining in two wheat varieties grown in thefield. The second experiment (in the greenhouse) evaluated theeffect of de-graining in plants subjected to water stress afteranthesis by immersing the root system in a solution of polyethyleneglycol (6000), as compared with non-stressed controls. In bothexperiments measurements were performed after de-graining toprovide data on leaf gas exchange, leaf water potential, osmoticadjustment of leaves and ears (greenhouse), the percent of stemweight loss as an index of stem reserve mobilization, finalroot weight (greenhouse) and ear weight components. De-graining caused a decrease in flag leaf stomatal conductance,carbon exchange rate (CER) and transpiration and an increasein flag leaf water potential. These effects were stronger withwater stress. De-graining did not affect osmotic adjustmentin the flag leaf but induced better adjustment in glumes andawns. De-graining decreased the percent of stem weight lossand increased final root weight, especially under drought stress. A weaker sink was, therefore, considered to improve plant droughtresistance in terms of the maintenance of higher leaf waterpotential, a larger root, a better osmotic adjustment in theear and, possibly, increased flag leaf longevity. The ‘cost’of this improved drought resistance was in reduced flag leafCER and reduced stem (and root?) reserve mobilization. Key words: Drought resistance, carbon exchange rate, stomata, transpiration, osmotic adjustment, leaf water potential, root, awns, yield  相似文献   

14.
Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt-tolerant relative L. pennellii (Correll) D'Arcy accession PE-47 growing on silica sand in a growth chamber were exposed to 0, 70, 140 and 210 m M NaCl nutrient solutions 35 days after sowing. The saline treatments were imposed for 4 days, after which the plants were rinsed with distilled water. Salinity in L. esculentum reduced leaf area and leaf and shoot dry weights. The reductions were more pronounced when sodium chloride was removed from the root medium. Reduction in leaf area and weight in L. pennellii was only observed after the recovery period. In both genotypes salinity induced a progressive reduction in leaf water potential and leaf conductance. During the recovery period leaf water potential (ψ1) and leaf conductance (g1) reached levels similar to those of control plants in wild and cultivated species, respectively. Leaf osmotic potential at full turgor (ψos) decreased in the salt treated plants of both genotypes, whereas the bulk modulus of elasticity was not affected by salinity. Leaf water potential at turgor loss point (ψtlp) and relative water content at turgor loss point (RWCtlp) appeared to be controlled by leaf osmotic potential at full turgor (ψos) and by bulk modulus of elasticity, respectively. At lowest salinity, the wild species carried out the osmotic adjustment based almost exclusively on Cl and Na+, with a marked energy savings. Under highest salinity, this species accommodate the stress through a higher expenditure of energy due to the contribution of organic solutes to the osmotic adjustment. The domesticated species carried out the osmotic adjustment based always on an important contribution of organic solutes.  相似文献   

15.
Foliar dehydration tolerance of twelve deciduous tree species   总被引:1,自引:0,他引:1  
The potential for foliar dehydration tolerance and maximum capacity for osmotic adjustment were compared among 12 temperate, deciduous tree species, under standardized soil and atmospheric conditions. Dehydration tolerance was operationally defined as lethal leaf water potential (); the of the last remaining leaves surviving a continuous, lethal soil drying episode. Nyssa sylvatica Marsh., and Liriodendron tulipifera L. were most sensitive to dehydration, having lethal leaf of -2.04 and -2.38 MPa, respectively. Chionanthus virginicus L., Quercus prinus L., Acer saccharum Marsh., and Quercus acutissima Carruthers withstood the most dehydration, with leaves not drying until leaf dropped to -5.63 MPa or below. Lethal leaf (in MPa) of other, intermediate species were: Quercus rubra L. (-3.34), Oxydendrum arboreum (L.) D.C. (-3.98), Halesia carolina L. (-4.11), Acer rubrum L. (-4.43), Quercus alba L. (-4.60), and Cornus florida L. (-4.88). Decreasing lethal leaf was significantly correlated with increasing capacity for osmotic adjustment. C. virginicus and Q. acutissima showed the most osmotic adjustment during the lethal soil drying episode, with osmotic potential at full turgor declining by 1.73 and 1.44 MPa, respectively. Other species having reductions in osmotic potential at full turgor exceeding 0.50 MPa were (in MPa) Q. prinus (0.89), A. saccharum (0.71), Q. alba (0.68), H. carolina (0.67), Q. rubra (0.60), and C. florida (0.52).  相似文献   

16.
Abstract. Drought resistance in terms of plant production under conditions of drought stress was previously defined for several spring wheat ( Triticum aestivum L.) varieties. Four varieties, differing in their drought resistance by this definition, were compared in their physiological responses to water stress, as induced by polyethylene glycol 6000 in the growth medium.
Drought resistance was associated with osmotic adjustment, total root mass production under stress, maintenance of some stomatal permeability under stress, and maintenance of turgor at a given level of drought stress, by either osmotic adjustment or elevated plant water potential.
Drought resistance was not associated, in this experiment, with plant top growth under stress or non-stress conditions, maximum leaf area per plant, plant transpiration, and total root mass production under non-stress conditions.  相似文献   

17.
A field experiment was conducted with a non-irrigated waterstress treatment and an irrigated control using four sorghum(Sorghum bicolor L. Moench) cultivars. We investigated the effectsof water deficits on leaf water relations, osmotic adjustment,stomatal conductance, cuticular conductance, cell membrane stability(CMS) measured by the polyethylene glycol (PEG) test, epicuticularwax load (EWL), cytoplasmic lipid content, solute concentrationin cell sap, and growth. Osmotic adjustment was observed under water deficit conditions.Lower osmotic potential enabled plants to maintain turgor anddecreased the sensitivity of turgor-dependent processes. Sugarand K were identified as the major solutes contributing to osmoticpotential in sorghum. Sugar and K concentrations in cell sapincreased by 37·4% and 27%, respectively, under waterdeficit conditions in favour of decreasing osmotic potential.Stomatal conductance and cuticular conductance were lower inthe non-irrigated plants. A wide range in CMS among four cultivarswas observed. CMS increased with increasing water deficits.EWL increased on leaves of water deficient plants and was positivelycorrelated with cuticular conductance and CMS. Membrane phospholipidcontent increased in water-stressed plants. CMS as measured by the PEG test, was influenced by EWL, cuticularthickness, and osmotic concentration of leaf tissues. The cultivarswhich maintained higher CMS, higher EWL, lower cuticular conductance,higher turgor and higher osmotic adjustment under water deficitconditions were identified as drought tolerant. Key words: Sorghum bicolor, cell membrane stability, leaf water relationsosmotic adjustment, water stress  相似文献   

18.
This study aimed to assess the accumulation of organic and inorganic solutes and their relative contribution to osmotic adjustment in roots and leaves of Jatropha curcas subjected to different water deficit intensity. Plants were grown in vermiculite 50% (control), 40%, 30%, 20% and 10% expressed in gravimetric water content. The water potential, osmotic potential and turgor potential of leaves decreased progressively in parallel to CO2 photosynthetic assimilation, transpiration and stomatal conductance, as the water deficit increased. However, the relative water content, succulence and water content in the leaves did not show differences between the control and stressed plants, indicating osmotic adjustment associated with an efficient mechanisms to prevent water loss by transpiration through stomatal closure. The K+ ions had greater quantitative participation in the osmotic adjustment in both leaves and roots followed by Na+ and Cl, while the NO3 ion only showed minor involvement. Of the organic solutes studied, the total soluble sugars showed the highest relative contribution to the osmotic adjustment in both organs and its concentration positively increased with more severe water deficit. The free amino acids and glycinebetaine also effectively contributed to the osmotic potential reduction of both the root and leaves. The role of proline was quantitatively insignificant in terms of osmotic adjustment, in both the control and stressed roots and leaves. Our data reveal that roots and leaves of J. curcas young plants display osmotic adjustment in response to drought stress linked with mechanisms to prevent water loss by transpiration by means of the participation of inorganic and organic solutes and stomatal closure. Of all the solutes studied, soluble sugars uniquely display a prominent drought-induced synthesis and/or accumulation in both roots and leaves.  相似文献   

19.
Critical Water Potential for Stomatal Closure in Sitka Spruce   总被引:1,自引:0,他引:1  
Steady state rates of net photosynthesis and stomatal conductance at high water potentials were measured under controlled conditions in a leaf chamber on Sitka spruce [Picea sitchensis (Bong.) Carr.] shoots detached from the forest canopy or on seedlings. The water supply to the seedlings was terminated by excision and the shoot water potential (or critical water potential) and osmotic potential at the onset of stomatal closure measured. The turgor potential was calculated. The initial osmotic potential before insertion of the shoot into the chamber was also measured. Shoot water potential and osmotic potential at stomatal closure, and initial osmotic potential were significantly higher (less negative) in foliage from the lowest level in the canopy compared with foliage in the upper canopy, and higher in shoots of seedlings transferred to low light than in those at high light. Critical water potential also varied with season, being higher in July than in October and November. In all except one instance, turgor potential at the onset of stomatal closure was negative, possibly because of dilution of the cell sap by the extracellular water during the estimate of osmotic potential. Over all the experiments variation in critical water potential was correlated with variation in critical osmotic potential and, to a lesser extent, the initial osmotic potential. However, turgor potential at the critical potential varied from +0.6 to -4.6 bar. This suggests that difference in turgor between the guard cells and subsidiary cells, which controls stomatal aperture, is only loosely coupled with the bulk leaf turgor and hence that bulk leaf turgor is not a good index of the turbor relations of the guard cells.  相似文献   

20.
The tos1 (tomato osmotically sensitive) mutant, isolated from an in vitro screen of root growth during osmotic stress, was less sensitive to exogenous ABA, but accumulated more ABA under osmotic stress than WT plants. We assessed growth and water relations characteristics of hydroponically grown tos1 seedlings (in the absence of osmotic stress) at low and high evaporative demands. Growth of tos1 was severely inhibited at both high and low evaporative demands. Twenty DAS, WT and tos1 genotypes had a similar leaf water and turgor potential, but mature tos1 plants (45 day old) showed a significant diurnal loss of leaf turgor, with recovery overnight. Increased evaporative demand increased turgor loss of tos1 plants. High evaporative demand at the beginning of the day decreased stomatal conductance of tos1, without diurnal recovery, thus whole plant transpiration was decreased. De-topped tos1 seedlings showed decreased root hydraulic conductance and had a 1.4-fold increase in root ABA concentration. Impaired root function of tos1 plants failed to meet transpirational water demand and resulted in shoot turgor loss, stomatal closure and growth inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号