首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
This review focuses on the important physiological messenger, nitric oxide (NO), and its role in N-methyl-D-aspartate (NMDA) excitotoxicity. NO has been shown to be a key mediator of voltage-gated Ca(+2) transmembrane proteins. It remains unclear whether NO is implicated during hypoxia, or ischemic/reperfusion injuries as a neuroprotective or neurodegenerative factor. Excitotoxicity results from the excessive stimulation of excitatory glutamate receptors within the CNS. This review maintains that the feed-forward pathway precipitated by oxidative stress is the discriminating factor in the neuroprotective or neurodegenerative actions of NO.  相似文献   

2.
Regulation by S-nitrosylation of protein post-translational modification   总被引:1,自引:0,他引:1  
Protein post-translational modification by S-nitrosylation conveys a ubiquitous influence of nitric oxide on signal transduction in eukaryotic cells. The wide functional purview of S-nitrosylation reflects in part the regulation by S-nitrosylation of the principal protein post-translational modifications that play a role in cell signaling, including phosphorylation, acetylation, ubiquitylation and related modifications, palmitoylation, and alternative Cys-based redox modifications. In this minireview, we discuss the mechanisms through which S-nitrosylation exerts its broad pleiotropic influence on protein post-translational modification.  相似文献   

3.
The corpora allata (CA) of various insects express enzymes with fixation resistant NADPHdiaphorase activity. In female grasshoppers, juvenile hormone (JH) released from the CA is necessary to establish reproductive readiness, including sound production. Previous studies demonstrated that female sound production is also promoted by systemic inhibition of nitric oxide (NO) formation. In addition, allatotropin and allatostatin expressing central brain neurons were located in close vicinity of NO generating cells. It was therefore speculated that NO signaling may contribute to the control of juvenile hormone release from the CA.This study demonstrates the presence of NO/cGMP signaling in the CA of female Chorthippus biguttulus. CA parenchymal cells exhibit NADPHdiaphorase activity, express anti NOS immunoreactivity and accumulate citrulline, which is generated as a byproduct of NO generation. Varicose terminals from brain neurons in the dorsal pars intercerebralis and pars lateralis that accumulate cGMP upon stimulation with NO donors serve as intrinsic targets of NO in the CA. Both accumulation of citrulline and cyclic GMP were inhibited by the NOS inhibitor aminoguanidine, suggesting that NO in CA is produced by NOS. These results suggest that NO is a retrograde transmitter that provides feedback to projection neurons controlling JH production. Combined immunostainings and backfill experiments detected CA cells with processes extending into the CC and the protocerebrum that expressed immunoreactivity against the pan-neural marker anti-HRP. Allatostatin and allatotropin immunopositive brain neurons do not express NOS but subpopulations accumulate cGMP upon NO-formation. Direct innervation of CA by these peptidergic neurons was not observed.  相似文献   

4.
Nitric oxide has been extensively studied as an effector molecule of the host immune response against both protozoa and helminths, but parasites can also produce this molecule, through the action of nitric oxide (NO) synthases or NO synthases-like enzymes. The aim of this study was to verify the possible production of NO by Trichinella britovi L(1) larvae and the enzymes involved in this process. The NO synthase immunoreactivity and putative nitric oxide synthase-activity was analysed using antibodies to mammalian NO synthase III and to nitrotyrosine with immunohistochemistry, gold immunocytochemistry and immunoblot analysis and NADPH-diaphorase histochemistry. Our results show that T. britovi L(1) larvae possess an enzymatic activity capable of producing NO. The localisation of this activity, according to the NADPH-diaphorase histochemistry, is both at the cuticular and the internal level. This localisation is confirmed by nitrotyrosine immunohistochemistry both under optical and electron microscopy. Using the NO synthase III antibody, a similar pattern of labelling was found: in particular, electron microscopy showed a localisation of this immunoreactivity in the cuticle and in the stichocytes, where only the alpha2 granules contained gold particles, mainly concentrated at their periphery. Four polypeptides reacting to the NO synthase III antibody are revealed by Western blotting. Their molecular weight ranged from 38 to 50 kDa. A significant reaction of the anti-nitrotyrosine antibody to polypeptides 95, 60, 48 and 39 kDa from the same sample suggested the presence of different nitrosylated proteins.  相似文献   

5.
Hypoxia-induced responses are frequently encountered during cardiovascular injuries. Hypoxia triggers intracellular reactive oxygen species/nitric oxide (NO) imbalance. Recent studies indicate that NO-mediated S-nitrosylation (S-NO) of cysteine residue is a key posttranslational modification of proteins. We demonstrated that acute hypoxia to endothelial cells (ECs) transiently increased the NO levels via endothelial NO synthase (eNOS) activation. A modified biotin-switch method coupled with Western blot on 2-dimentional electrophoresis (2-DE) demonstrated that at least 11 major proteins have significant increase in S-NO after acute hypoxia. Mass analysis by CapLC/Q-TOF identified those as Ras-GTPase-activating protein, protein disulfide-isomerase, human elongation factor-1-delta, tyrosine 3/tryptophan 5-monooxygenase activating protein, and several cytoskeleton proteins. The S-nitrosylated cysteine residue on tropomyosin (Cys 170) and β-actin (Cys 285) was further verified with the trypsic peptides analyzed by MASCOT search program. Further understanding of the functional relevance of these S-nitrosylated proteins may provide a molecular basis for treating ischemia-induced vascular disorders.  相似文献   

6.
In this study we sought to determine whether the main components of the nitric oxide (NO) pathway are localized within the Leydig cells of the human testis and whether the soluble guanylyl cyclase (sGC), the enzyme that accounts for NO effects, is functionally active in these cells. Using an amplified immunocytochemical technique, immunoreactivity for nitric oxide synthase (NOS-I), sGC and cyclic guanosine monophosphate (cGMP) was detected within the cytoplasm of human Leydig cells. Distinct differences in staining intensity were found between individual Leydig cells, between cell groups and between Leydig cells of different patients. By means of a specific cGMP-RIA, a concentration-dependent increase in the quantity of cGMP was measured in primary cultures of human Leydig cells following exposure to the NO donor sodium nitroprusside. In addition, NOS-I immunoreactivity was seen in Sertoli cells, whereas cGMP and sGC immunoreactivity was found in Sertoli cells, some apically situated spermatids and residual bodies of seminiferous tubules. Dual-labelling studies and the staining of consecutive sections showed that there are several populations of Leydig cells in the human testis. Most cells were immunoreactive for NOS-I, sGC and cGMP, but smaller numbers of cells were unlabelled by any of the antibodies used, or labelled for NOS-I or cGMP alone, for sGC and cGMP, or for NOS-I and sGC. These results show that the Leydig cells possess both the enzyme by which NO is produced and the active enzyme which mediates the NO effects. There are different Leydig cell populations that probably reflect variations in their functional (steroidogenic) activity. Received: 27 March 1996 / Accepted: 14 July 1996  相似文献   

7.
Stout RF  Parpura V 《Cell calcium》2011,50(1):98-108
The four cephalic sensilla sheath (CEPsh) glial cells are important for development of the nervous system of Caenorhabditis elegans. Whether these invertebrate glia can generate intracellular Ca2+ increases, a hallmark of mammalian glial cell excitability, is not known. To address this issue, we developed a transgenic worm with the specific co-expression of genetically encoded red fluorescent protein and green Ca2+ sensor in CEPsh glial cells. This allowed us to identify CEPsh cells in culture and monitor their Ca2+ dynamics. We show that CEPsh glial cells, in response to depolarization, generate various intracellular Ca2+ increases mediated by voltage-gated Ca2+ channels (VGCCs). Using a pharmacological approach, we find that the L-type is the preponderant VGCC type mediating Ca2+ dynamics. Additionally, using a genetic approach we demonstrate that mutations in three known VGCC α1-subunit genes, cca-1, egl-19 and unc-2, can affect Ca2+ dynamics of CEPsh glial cells. We suggest that VGCC-mediated Ca2+ dynamics in the CEPsh glial cells are complex and display heterogeneity. These findings will aid understanding of how CEPsh glial cells contribute to the operation of the C. elegans nervous system.  相似文献   

8.
The ionotropic glutamatergic receptor system, especially the subtype mediated by N-methyl-D-aspartic acid (NMDA), is known to exhibit special sensitivity to the effect of ethanol. This is due partly to the ability of ethanol to modulate the production of nitric oxide through the NMDA-nitric oxide synthase (NOS) pathway. In this study, we examined the effects of ethanol on basal and NMDA-stimulated NOS activity in rat hippocampal slices by measuring the conversion of [(14)C]-arginine into [(14)C]-citrulline in an incubation system containing the necessary cofactors. Stimulation of hippocampal slices with NMDA (100 microM) enhanced NOS activity by 43% (n = 12). Although ethanol did not alter NOS activity when added to the incubation system during NMDA stimulation, it dose-dependently inhibited NMDA-NOS activity when added to the slices during the 90-min preincubation period. Further assay of NOS activity with brain cytosolic fraction indicated an inhibitory effect of ethanol (200 mM) when the assay was carried out in the absence of exogenous tetrahydrobiopterin (BH4), a redox-active cofactor for NOS. Incubation of brain homogenates resulted in a time-dependent increase in the levels of lipid peroxidation products, but ethanol did not further enhance these products. Taken together, these results provide evidence for the role of BH4 but not oxidative stress in the inhibitory effect of ethanol on NMDA-NOS activity in rat hippocampal slices.  相似文献   

9.
We have established a rapid, homogeneous, cell-based, and highly sensitive assay for guanosine 3'-5'-cyclic monophosphate (cGMP) that is suitable for fully automated ultra-high-throughput screening. In this assay system, cGMP production is monitored in living cells via Ca2+ influx through the olfactory cyclic nucleotide-gated cation channel CNGA2, acting as the intracellular cGMP sensor. A stably transfected Chinese hamster ovary (CHO) cell line was generated recombinantly expressing soluble guanylate cyclase, CNGA2, and aequorin as a luminescence indicator for the intracellular calcium concentration. This cell line was used to screen more than 900,000 compounds in an automated ultra-high-throughput screening assay using 1536-well microtiter plates. In this way, we have been able to identify BAY 58-2667, a member of a new class of amino dicarboxylic acids that directly activate soluble guanylate cyclase. The assay system allows the real-time cGMP detection within living cells and makes it possible to screen for activators and inhibitors of enzymes involved in the nitric oxide/cGMP pathway.  相似文献   

10.
Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots   总被引:2,自引:0,他引:2  
To further explore the biochemical basis of Cd toxicity in developing wheat seedlings, we studied the possible role of nitric oxide (NO) and polyamines as signaling molecules involved in metal-induced root growth inhibition. When used at 0.1 mM, sodium nitroprusside, a NO-releasing compound, inhibited root growth to a similar extent as Cd and enhanced the polyamine contents as Cd also did. Putrescine and spermidine treatments caused significant decreases in root growth with spermine giving the greatest level of inhibition (77% reduction). The simultaneous addition of Cd and inhibitors of putrescine biosynthesis (DFMA and DFMO) prevented increases in putrescine levels but did not restore normal root growth. NO content, as evidenced by the fluorescent probe DAF-FM diacetate, was found to be significantly increased in the roots of both Cd and polyamine treated plants, especially in those exposed to spermine. The effect was specific for NO since the NO scavenger cPTIO almost suppressed the fluorescent signal. Concerning the oxidative status of the root system, only Cd and spermine enhanced lipid peroxidation in roots. At the same time, all treatments led to a significant increase in levels of the non-enzymatic antioxidant defense glutathione. Our results strongly suggest that Cd and spermine treatments induce NO formation in wheat roots which, in turn, is involved in root growth inhibition.  相似文献   

11.
Intracellular Ca2+ ([Ca2+]i) changes were measured in cell bodies of cultured rat hippocampal neurones with the fluorescent indicator Fluo-3. In the absence of external Ca2+, the cholinergic agonist carbachol (200 μM) and the sarco-endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (0.4 μM) both transiently elevated [Ca2+]i. A subsequent addition of Ca2+ into the bathing medium caused a second [Ca2+]i change which was blocked by lanthanum (50 μM). Taken together, these experiments indicate that stores depletion can activate a capacitative Ca2+ entry pathway in cultured hippocampal neurones and further demonstrate the existence of such a Ca2+ entry in excitable cells.  相似文献   

12.
In the present study we analysed the effects of S-nitrosocysteine (CysNO) on adult human red blood cell metabolism and observed that metabolic response depended on the degree of cell oxygenation. In particular, glucose metabolised through the pentose phosphate pathway (PPP) was higher in treated erythrocytes than in untreated cells only at high O(2) pressure. Since, following the treatment of intact cells with CysNO, glucose-6-phosphate dehydrogenase (G6PD) and phosphofructokinase (PFK) activities did not evidence any significant alteration, the possibility that the stimulation of PPP was triggered by a CysNO mediated modification of these enzymes was excluded. Intracellular S-nitrosoglutathione (GSNO), detected only in treated red blood cells, may be linked solely to the exposition to the NO donor. A possible rationalisation of the different metabolic behaviour shown by erythrocytes as a function of their oxygenation state is proposed. It takes into account the different route of catabolic degradation observed in vitro for GSNO under aerobic and anaerobic condition.  相似文献   

13.
Nitric oxide and muscarinic agonists both stimulate motoneuron spike activity and cGMP production in the central nervous system of larval Manduca sexta. The possible role of nitric oxide in mediating muscarinic changes in excitability was examined by measuring cGMP accumulation and proleg motoneuron activity while blocking or mimicking the production of nitric oxide. All the muscarinic-induced changes in cGMP are blocked by the nitric oxide-synthase inhibitor, nitro-l-arginine, an effect that is partially prevented by co-incubation with arginine. Action potential blockage with tetrodotoxin revealed that muscarinic increases in cGMP production have both spike-dependent and spike-independent mechanisms. Furthermore, nitric oxide donors can increase proleg motoneuron activity and this stimulation is blocked by 1H-{1,2,4}oxadiazolo{4, 3-a}quinoxalin-1-one suggesting that it is mediated by a nitric oxide-sensitive guanylyl cyclase. In contrast, nitro-l-arginine and a variety of other nitric oxide-synthase inhibitors and nitric oxide scavengers have no significant effect on muscarinic stimulation of motoneuron activity. Therefore, although a nitric oxide sensitive guanylyl cyclase is capable of elevating spike activity and muscarinic agonists can increase cGMP, this mechanism is not necessary for the normal muscarinic increase in excitability. It is concluded that muscarinic receptors are coupled to nitric oxide and cGMP production in neurons other than those controlling the prolegs. Accepted: 22 July 1999  相似文献   

14.
We have previously shown that mitochondrial membrane potential disruption is involved in mechanisms underlying differential vulnerabilities to the excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors between primary cultured neurons prepared from rat cortex and hippocampus. To further elucidate the role of mitochondria in the excitotoxicity after activation of NMDA receptors, neurons were loaded with the fluorescent dye calcein diffusible in the cytoplasm and organelles for determination of the activity of mitochondrial permeability transition pore (mPTP) responsible for the leakage of different mitochondrial molecules. The addition of CoCl2 similarly quenched the intracellular fluorescence except mitochondria in both cultured neurons, while further addition of NMDA led to a leakage of the dye into the cytoplasm in hippocampal neurons only. An mPTP inhibitor prevented the NMDA-induced loss of viability in hippocampal neurons, while an activator of mPTP induced a similarly potent loss of viability in cortical and hippocampal neurons. Although NMDA was more effective in increasing rhodamine-2 fluorescence as a mitochondrial calcium indicator in hippocampal than cortical neurons, a mitochondrial calcium uniporter inhibitor significantly prevented the NMDA-induced loss of viability in hippocampal neurons. Expression of mRNA was significantly higher for the putative uniporter uncoupling protein-2 in hippocampal than cortical neurons. These results suggest that mitochondrial calcium uniporter would be at least in part responsible for the NMDA neurotoxicity through a mechanism relevant to promotion of mPTP orchestration in hippocampal neurons.  相似文献   

15.
PMA-induced respiratory burst neutrophils were exposed to exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) to study the effect of NO on calcium signaling. A sharp rise of cytosolic calcium concentration ([Ca2+]c) was triggered by 1 mM SNP with and without external calcium. We found that GF 109203X, a specific inhibitor of protein kinase C, DPI, a putative inhibitor of the respiratory burst-generating NADPH oxidase, and 2-DG, a non-metabolizable analog of glucose, completely inhibited the SNP-induced rise of [Ca2+]c in PMA-activated respiratory burst neutrophils. Meanwhile, 2-APB and TMB-8, two potent IP3 receptor inhibitors, prevented calcium increase respectively. Furthermore, N-ethylmaleimide (NEM), a specific cysteine alkylating agent, evidently abolished the [Ca2+]c elevation. In contrast, the sGC inhibitor NS2028 had little effect on the rise of [Ca2+]c. Taken together, these results indicated that exogenous NO induced the release of calcium from intracellular IP3 receptor-sensitive stores of neutrophils via S-nitrosylation in a respiratory burst-dependent manner.  相似文献   

16.
Due to the diversity of its physiological and pathophysiological functions and general ubiquity, the study of nitric oxide (NO) has become of great interest. In this work, it was demonstrated that Leishmania amazonensis promastigotes produces NO, a free radical synthesized from l-arginine by nitric oxide synthase (NOS). A soluble NOS was purified from L. amazonensis promastigotes by affinity chromatography (2′, 5′-ADP-agarose) and on SDS-PAGE the enzyme migrates as a single protein band of 116.2 (±6) kDa. Furthermore, the presence of a constitutive NOS was detected through indirect immunofluorescence using anti-cNOS and in NADPH consumption assays. The present work show that NO production, detected as nitrite in culture supernatant, is prominent in promastigotes preparations with high number of metacyclic forms, suggesting an association with the differentiation and the infectivity of the parasite.  相似文献   

17.
Qu M  Zhou Z  Chen C  Li M  Pei L  Chu F  Yang J  Wang Y  Li L  Liu C  Zhang L  Zhang G  Yu Z  Wang D 《Neurochemistry international》2011,59(8):1095-1103
Lycopene is a potent free radicals scavenger with demonstrated protective efficacy in several experimental models of oxidative damage. Trimethyltin (TMT) is an organotin compound with neurotoxic effects on the hippocampus and other limbic structures and is used to model neurodegenerative diseases targeting these brain areas. Oxidative stress is widely accepted as a central pathogenic mechanism of TMT-mediated neurotoxicity. The present study investigated whether the plant carotene lycopene protects against TMT-induced neurotoxicity in primary cultured rat hippocampal neurons. Lycopene pretreatment improved cell viability in TMT-treated hippocampal neurons and inhibited neuronal apoptosis. Microfluorometric imaging revealed that lycopene inhibited the accumulation of mitochondria-derived reactive oxygen species (ROS) during TMT exposure. Moreover, lycopene ameliorated TMT-induced activation of the mitochondrial permeability transition pore (mPTP) and the concomitant depolarization of the mitochondrial membrane potential (ΔΨm). Consequently, cytochrome c release from the mitochondria and ensuing caspase-3 activation were markedly reduced. These findings reveal that lycopene protects against TMT-induced neurotoxicity by inhibiting the mitochondrial apoptotic pathway. The anti-apoptotic effect of lycopene on hippocampal neurons highlights the therapeutic potential of plant-derived antioxidants against neurodegenerative diseases.  相似文献   

18.
The nicotinamide adenine dinucleotide phosphate (NADPH) and reduced glutathione (GSH) molecules play important roles in the redox homeostasis of plant cells. Using tomato (Solanum lycopersicum) plants grown with 120 mM NaCl, we studied the redox state of NADPH and GSH as well as ascorbate, nitric oxide (NO) and S-nitrosoglutathione (GSNO) content and the activity of the principal enzymes involved in the metabolism of these molecules in roots. Salinity caused a significant reduction in growth parameters and an increase in oxidative parameters such as lipid peroxidation and protein oxidation. Salinity also led to an overall decrease in the content of these redox molecules and in the enzymatic activities of the main NADPH-generating dehydrogenases, S-nitrosoglutathione reductase and catalase. However, NO content as well as gluthahione reductase and glutathione peroxidase activity increased under salinity stress. These findings indicate that salinity drastically affects redox and NO homeostasis in tomato roots. In our view, these molecules, which show the interaction between ROS and RNS metabolisms, could be excellent parameters for evaluating the physiological conditions of plants under adverse stress conditions.  相似文献   

19.
Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress.  相似文献   

20.

Background

One of the signaling mechanisms mediated by nitric oxide (NO) is through S-nitrosylation, the reversible redox-based modification of cysteine residues, on target proteins that regulate a myriad of physiological and pathophysiological processes. In particular, an increasing number of studies have identified important roles for S-nitrosylation in regulating cell death.

Scope of review

The present review focuses on different targets and functional consequences associated with nitric oxide and protein S-nitrosylation during neuronal cell death.

Major conclusions

S-Nitrosylation exhibits double-edged effects dependent on the levels, spatiotemporal distribution, and origins of NO in the brain: in general Snitrosylation resulting from the basal low level of NO in cells exerts anti-cell death effects, whereas S-nitrosylation elicited by induced NO upon stressed conditions is implicated in pro-cell death effects.

General Significance

Dysregulated protein S-nitrosylation is implicated in the pathogenesis of several diseases including degenerative diseases of the central nervous system (CNS). Elucidating specific targets of S-nitrosylation as well as their regulatory mechanisms may aid in the development of therapeutic intervention in a wide range of brain diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号