首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a bandstop plasmonic filter that comprises a metal–insulator–metal (MIM) waveguide and a few pairs of strip cavities that are embedded in the metal. The strip cavity acts as both a near-field antenna and an MIM resonator. The central frequency and the bandwidth of the forbidden band are inversely related to the cavity length and the cavity-to-waveguide distance, respectively. These results correlate with the predictions of the ring resonator model but only under the resonant condition that double the effective length of cavity is an integer multiple of the guiding wavelength in the cavity.  相似文献   

2.
3.
A sub-wavelength electro-optic switch based on plasmonic T-shaped waveguide has been proposed and numerically investigated. The finite-difference time-domain simulation results reveal that the switch based on T-shaped waveguide with two U-shaped grooves can realize the function of switching single wavelength from one port to the other by an external voltage. The U-shaped structure is composed of two teeth filled with highly nonlinear organic EO material and one groove filled with 6H-SiC connecting the two teeth. The switch wavelength can be chosen by adjusting both lengths of the left and right teeth, and the switch voltage is 3.35 V for the wavelength of λ = 730 nm with the insertion loss around −2.6 dB and the extinction ratio around −20 dB at port 2.  相似文献   

4.
A subwavelength plasmonic comb-like filter is proposed by using dual symmetric slot cavities which are placed between two parallel metal–insulator–metal (MIM) structure waveguides. The structure can be considered as a resonance loop which consists of slot cavity resonators and MIM waveguide resonators. The reflective wavelength range and channel spacing are determined by the lengths of slot cavities and MIM waveguides, respectively. Three, four, and five reflective channels with high reflection are achieved in a small wavelength range. Higher channel count can be available by increasing the length or the real part of effective index of MIM waveguides. Such a device can find applications in various optical systems such as wavelength demultiplexing components.  相似文献   

5.
This study proposes the time-evolved plasmonic photonic Bloch oscillations (PBOs) in a composite metal–insulator–metal (CMIM) waveguide structure. This device contains two kinds of MIM waveguide with different thickness of the insulator gaps. The time-resolved plasmonic PBO motion in this CMIM waveguide can be observed by introducing a linearly graded dielectric material. The ray trajectory results from the Hamiltonian optics are consistent with the finite-difference time-domain simulation results.  相似文献   

6.
A long-range surface plasmon polariton variable optical attenuator based on available nematic liquid crystals and polymers is proposed and theoretically investigated. It is demonstrated that the electro-optic control of the nematic molecular orientation is capable of tuning the level of index asymmetry of an Au stripe waveguide and the key properties of the fundamental long-range plasmonic mode, such as modal profile and propagation losses. By proper structural design and material selection, plasmonic in-line intensity modulators are designed, which exhibit very low power consumption, extinction ratios in excess of 30 dB, and insertion losses as low as 1 dB for a device length in the millimeter range. Such active plasmonic elements are envisaged to be used in interchip photonics bus interconnects.  相似文献   

7.
Luo  Xin  Zou  Xihua  Li  Xiaofeng  Pan  Wei  Luo  Bin  Yan  Lianshan 《Plasmonics (Norwell, Mass.)》2014,9(4):887-892
Plasmonics - A plasmonic filter based on metal-insulator-metal (MIM) waveguide with phase shifts is proposed, and the corresponding transmission characteristics are investigated. Since the...  相似文献   

8.
Zheng  Pengfei  Yang  Huimin  Fan  Meiyong  Hu  Guohua  Zhang  Ruohu  Yun  Binfeng  Cui  Yiping 《Plasmonics (Norwell, Mass.)》2018,13(6):2029-2035

A hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide was proposed to overcome the difficulty in achieving high-speed modulation on the nanometric plasmonic waveguide platform. The extinction ratio and the figure of merit of the proposed modulator were analyzed in detail, and a tradeoff between them was found due to the intrinsic loss of the channel plasmonic polariton waveguide. And an optimized hybrid plasmonic modulator with large modulation bandwidth of 0.662 THz, low power consumption of 118.7 fJ/bit, and short device length of 7.680 μm was obtained theoretically. In addition, the proposed hybrid plasmonic modulator based on graphene on channel plasmonic polariton waveguide is easy to fabricate and provides a potential solution for the high-speed plasmonic modulator.

  相似文献   

9.

A novel design of elliptic cylindrical nanowire hybrid plasmonic waveguide (ECNHPW)–based polarization beam splitter (PBS) is proposed. In the proposed design, the ECNHPW arm acts as an input port and a bar port; on the other hand, a regular silicon wire (RSW) arm acts as a cross port. By selecting the physical parameters of the proposed PBS accurately, the transverse electric (TE) mode is merely satisfied with the phase-matching condition. In contrast, the transverse magnetic (TM) mode does not propagate to the RSW arm. Consequently, the TM input mode goes directly to the ECNHPW arm, while the TE input mode in ECNHPW is coupled with RSW arm. As a result, the two different polarization modes are meritoriously separated, and they pass through two different arms. For the proposed PBS, the insertion loss (IL) of both polarizations lies below 1 dB. For TE input, the value of the polarization extinction ratio (PER) is 27.2 dB, and for TM input, it is 23.9 dB at 1550 nm operating wavelength. Further optimization is implemented by varying the wavelength, thickness of SiO2, and the gap between the waveguides using the finite element method (FEM). The proposed PBS is designed with 150 nm bandwidth, high PER, and low IL, which can be suitable for photonic integrated circuits (PICs).

  相似文献   

10.
Using the finite difference time-domain method, we present a comprehensive numerical investigation of a branch-shaped filter based on the metal-insulator-metal (MIM) waveguide. The results show that several passbands and stopbands appear in the transmission spectra, which are resulted by the phase differences between the surface plasmon polaritons (SPPs) propagating along the straight waveguide and the SPPs resonating in the circuit formed by the branch and the straight waveguide. The effects of the structural parameters of the branch-shaped filters on their transmission properties are also studied. These results not only present an alternative plasmonic filter for the MIM waveguides but also help us to understand the transmission properties of the circuit-shaped structures.  相似文献   

11.
The filter function of the metal–insulator–metal (MIM) waveguide with a gear-shaped nanocavity is investigated using the finite-difference time-domain method. Since the gear breaks the symmetric distribution of the resonance, Fano resonance occurs in the gear-shaped nanocavity. Fano resonance strongly depends on the structural parameters of the gear. Compared to the MIM waveguide with a disk-shaped nanocavity, the MIM waveguide with a gear-shaped nanocavity allows for a much more sensitive detection of small refractive index changes of the filled media inside the nanocavity, which reveals a potential sensor application of the MIM waveguide with a gear-shaped nanocavity.  相似文献   

12.
Zhang  Zhaojian  Yang  Junbo  Han  Yunxin  He  Xin  Huang  Jie  Chen  Dingbo 《Plasmonics (Norwell, Mass.)》2020,15(3):761-767

Plasmonic nanocircuits can deliver light in subwavelength scale, however, require state-of-the-art fabrication process due to the ultra-small footprints. Here, we introduce direct coupling strategy based on metal-insulator-metal (MIM) waveguide systems to reduce the system loss as well as the fabrication difficulty and increase the structural stability. Following this strategy, the coupling between the input waveguide and square ring resonator (SRR) can be realized via an aperture, and for the coupling between SRRs, the metal gap can be removed. The numerical results show that such direct coupling can produce similar effects with conventional indirect coupling in MIM waveguide systems, and the physics mechanism behind as well as influences of geometric parameters on transmission spectrum is also investigated. This work provides a simpler approach to realize on-chip plasmonic nanodevices, such as filters, sensors, and optical delay lines, in practice.

  相似文献   

13.

In this paper, a wavelength demultiplexing structure based on multi-teeth-shaped metal-insulator-metal (MIM) plasmonic waveguide is designed and numerically studied using the finite-difference time-domain (FDTD) method. Investigating the characteristics of a multi-teeth-shaped plasmonic waveguide structure reveals that with the design of the structure, it was possible to create a mode inside the bandgap of the filter. Based on the created mode inside the bandgap of the filter, the demultiplexer structure has been proposed and investigated. By changing the geometric parameters of the structure, the transmission wavelength of the demultiplexer channel can be adjusted. The proposed demultiplexer can be used in integrated optical circuits.

  相似文献   

14.
In this paper, we explore the potential of the plasmonic metal–insulator–metal (MIM) periodically graded structure. Based on the coupled modes approach, an analytical model has been observed for the surface plasmon polariton (SPP) propagation. The band modes of SPP can be also supported by the MIM structure and we have analyzed the strong dependence of band width on structure parameters. The obtained analytical expressions allow one to easily choose the structure parameters for the desired band width.  相似文献   

15.
Plasmonics - In this paper, a plasmonic filter based on metal-insulator-metal (MIM) configuration is proposed. It uses a hexagonal nano-resonator (HNR) coupled to multi-stub waveguides (MSWs) from...  相似文献   

16.
A plasmonic refractive index sensor based on electromagnetically induced transparency (EIT) composed of a metal-insulator-metal (MIM) waveguide with stub resonators and a ring resonator is presented. The transmission properties and the refractive index sensitivity are numerically studied with the finite element method (FEM). The results revealed an EIT-like transmission spectrum with an asymmetric line profile and a refractive index sensitivity of 1057 nm/RIU are obtained. The coupled mode theory (CMT) based on transmission line theory is adopted to illustrate the EIT-like phenomenon. Multiple EIT-like peaks are observed in the transmission spectrum of the derived structures based on the MIM waveguide with stub resonator coupled ring resonator. To analyze the multiple EIT-like modes of the derived structures, the H z field distribution is calculated. In addition, the effect of the structural parameters on the EIT-like effect is also studied. These results provide a new method for the dynamic control of light in the nanoscale.  相似文献   

17.
Surface plasmon polariton (SPP) waveguides formed by coupled plasmonic cavities on metallic Moire surfaces have been investigated both experimentally and numerically. The Moire surface, fabricated by interference lithography, contains periodic arrays of one-dimensional cavities. The coupling strength between the cavities has been controlled by changing the periodicities of the Moire surface. The ability to control the coupling strength allows us to tune the dispersion and the group velocity of the plasmonic coupled cavity mode. Reflection measurements and numerical simulation of the array of SPP cavities have shown a coupled resonator type plasmonic waveguide band formation within the band gap. Coupling coefficients of cavities and group velocities of SPPs are calculated for a range of cavity sizes from weakly coupled regime to strongly coupled regime.  相似文献   

18.
We design two kinds of plasmonic broadband polarization splitters based on dual-core photonic crystal fiber (DC-PCF) with elliptical Au or Ag nanowire in this paper. It is analyzed for the polarization independent characterestics of the designed DC-PCF by the finite element method (FEM). In order to excite the surface plasmon resonance (SPR), the metal Au and Ag are filled into elliptical central air hole. The resonance coupling between the fourth- or fifth-order surface plasmon modes (SPMs) and core-guided modes (CGMs) are founded by this numerical simulation. The device lengths of the designed splitters with Au nanowire are 2937 and 827 μm at the wavelength of 1.31 and 1.55 μm, respectively. As the extinction ratios are better than ?20 dB, its bandwidths are better than 94 and 103 nm. For the designed Ag nanowire splitter, the device lengths are 3066 or 809 μm at 1.31 or 1.55 μm, respectively. The bandwidths with the extinction ratio better than ?20 dB are 66 and 104 nm, respectively.  相似文献   

19.
Based on a metal-dielectric-metal (MDM) plasmonic waveguide side coupled with a single cavity, we rebuild such resonator system by cascading double side-coupled cavities to obtain flat-top reflection response over a frequency bandwidth. The increased coherent scattering path provides an additional freedom to engineer the complex interference between the cavity modes and the waveguide mode. By decomposing the compound cavity modes into two decoupled resonances, we analyze the conditions to realize flat-top reflection response. The physics behind the flat-top reflection characteristics is found to be originated from the interference interaction between the two cavities through examining the cavity excitations and the reflected power response. Temporal coupled-mode theory and finite difference time domain method are utilized as theoretical and numerical tools which convince each other.  相似文献   

20.
We consider a model utilizing the concept of impedance matching, which can be applied to design the coupled cascaded plasmonic cavity waveguide with desired properties. We use a transfer matrix method to obtain its transmission and dispersion diagrams. Base on this method, we demonstrate that a band-pass metal–dielectric–metal plasmonic filter with quasi-flat group velocity and tunable bandwidth can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号