首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheng  Yongzhi  Gong  Rongzhou  Wu  Lin 《Plasmonics (Norwell, Mass.)》2017,12(4):1113-1120

In this paper, a tri-layer metamaterial composed of a split-disk structure array sandwiched with two layers of twisted sub-wavelength metal grating is proposed and investigated numerically in terahertz region. The numerical results exhibit that linear polarization conversion via diode-like asymmetric transmission for terahertz waves within ultra-broadband frequency range is achieved due to Fabry-Perot-like resonance. In our design, the conversion polarization transmission coefficient for normal incidence is greater than 90 % in the range of 0.23–1.17 THz, equivalent to 134.3 % relative bandwidth. The physical mechanism of the broadband linear polarization conversion effect is further illustrated by simulated electrical field distributions.

  相似文献   

2.
We propose a novel plasmonic metal structure composed of a silver film perforated with a two-dimensional square array of two-level cylindrical holes on a silica substrate. The transmission properties of this structure are theoretically calculated by the finite-difference time-domain (FDTD) method. Double-enhanced transmission peaks are achieved in the visible and infrared regions, which mainly originate from the excitation of localized surface plasmon resonances (LSPRs), the hybridization of plasmon modes, and the optical cavity mode formed in the holes. The enhanced transmission behaviors can be effectively tailored by changing the geometrical parameters and dielectric materials filled in the holes. These findings indicate that our proposed structure has potential applications in highly integrated optoelectronic devices.  相似文献   

3.
In this study, we propose a plasmonic free-space filter with dual resonance wavelength by using an asymmetric T-shaped array. The structure under the T-shaped structure forms two metal/insulator/metal cavities with different cavity length. Each cavity supports a specific resonance wavelength. A notch filter for second harmonic generation Nd:YAG laser is also proposed. The filter offers two resonance dips and low sideband. In addition, the filter properties are based on the localized surface plasmon. Therefore, the angle tolerance is extremely high. This makes the proposed structure easy to align. The proposed structure can be used in dual wavelength biosensing detection and dual wavelength thermal emission applications.  相似文献   

4.
Due to the limit of nanofabrication methods of the nano-hole array (i.e., focused ion beam, nanoimprint/electron beam lithography, and metal film evaporation on top of the free standing membrane), the nano-hole arrays patterned in a noble metal film always has a non-vertical sidewall profile. In this work, the optical transmittance of the non-vertical profile nano-hole array with different tapered angle (α) and structural periodicity (P) was numerically investigated. The optimum tapered angle in case of positive profile of the nano-hole arrays was found as 10° and 12° at structural period of 450 and 500 nm, respectively. However, in case of negative profile, the optimum tapered angle of the nano-hole array was obtained as 4° at both structural period of 450 and 500 nm. The first and the second resonance modes of the nano-hole arrays with negative profile were shown a blueshift of 16 and 9 nm on increasing the tapered angle from 0° to 16° at structural period of 450 and 500 nm, respectively. It was also found that nano-hole arrays with positive tapered profile result in higher transmission than the negative profile one.  相似文献   

5.
Cai  Zheng-jie  Liu  Gui-qiang  Liu  Zheng-qi  Liu  Xiao-shan  Pan  Ping-ping  Huang  Shan  Wang  Yan  Liu  Mu-lin  Gao  Huogui 《Plasmonics (Norwell, Mass.)》2016,11(2):683-688

The optical properties of a novel nanostructure consisting of a hexagonal array of aligned vertically three-layered metal-dielectric-metal nanodisks on a silver film are theoretically studied through the finite-difference time-domain method. The novel nanostructure exhibits three obvious optical transmission bands due to the excitation of subradiant plasmon modes, superradiant plasmon modes, and Fano resonances. Surface plasmon polaritons of the underlying Ag film also play a significant role on these three optical transmission bands via coupling with localized surface plasmons of nanodisk pairs. Moreover, the nanostructure also exhibits a good tunability of optical response by modifying the sizes of cylinders, the thickness of underlying metal film, and the dielectric constant of middle layer. These results demonstrate the nanostructure with great advantages in optical sensors and filters.

  相似文献   

6.
Making a continuous metal film with near-unity transparency has received more and more attention in recent years because of its potential applications for various optoelectronic devices. Here, we theoretically show that a high tunable plasmon-induced transparency metal film structure can be performed by double continuous metal films inserted with a two-dimensional hexagonal lattice array of plasmonic nanopariticles. The proposed structure shows near-unity anti-reflection and intensively enhanced transmission via the cooperative effects of strong resonant near-field light input and output coupling by the plasmonic array and the excitation of surface electromagnetic waves of the metal films. The optical response can be efficiently mediated by varying the sizes of nanoparticles and the separated distance between the metal array and the metal films. With the merits of high transparency, sub-wavelength sizes and wholly retained metal characteristics including high conductivity via using the pure metallic materials, the structure proposed here suggests various potential applications in optoelectronic integrated circuits.  相似文献   

7.
Experimental and theoretical study of sensors based on enhanced transmission through periodic metal nanoslits is presented. Our approach consists of the design of one-dimensional nanoslits array and its application in sensing for water quality control. Rigorous coupled waves analysis was used for the design and fit to the experimental data. Two types of surface plasmon resonance excitations are shown to be possible, one at the upper grating–analyte interface and one at the lower grating–substrate interface. This latter resonance is shown to be affected by the multiple interference or cavity-type effects. Those structures were fabricated by deposition of the metal layer and electron beam lithography of the nanostructure. We found that Ag-based periodic array exhibits the highest sensitivity to refractive index variations. Sensitivity enhancement was measured by ethanol concentrations in water. Stability of the Ag-based sensor was improved by covering the grating with less than 15 nm polymethyl methacrylate capping layer without deterioration of the sensitivity.  相似文献   

8.
In this paper, the coupling interaction is investigated between a metallic nanowire array and a metal film under the Kretschmann condition. The plasmonic multilayer is composed of a metallic nanowire array embedded in a polymer layer positioned above a metal film, exploiting the classical surface plasmon resonance (SPR) configuration. We analyze the influence of various structural parameters of the metallic nanowire array on the SPR spectrum of thin metal film. The results show that the coupling interactions of nanowires with the metal film can greatly affect SPR resonance wavelength and increase SPR sensitivity. The coupling strength of metallic nanowire array and metal film also impacts resonance wavelength, which can be used to adjust SPR range but have little effect on its sensitivity. The results are confirmed using a dipole coupling resonance model of metallic nanowire. We demonstrated that this nanostructured hybrid structure can be used for high sensitivity SPR monitoring in a large spectral range, which is important for advanced SPR measurement including fiber-optic SPR sensing technology.  相似文献   

9.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   

10.
Li‐rich layered metal oxides are one type of the most promising cathode materials in lithium‐ion batteries but suffer from severe voltage decay during cycling because of the continuous transition metal (TM) migration into the Li layers. A Li‐rich layered metal oxide Li1.2Ti0.26Ni0.18Co0.18Mn0.18O2 (LTR) is hereby designed, in which some of the Ti4+ cations are intrinsically present in the Li layers. The native Li–Ti cation mixing structure enhances the tolerance for structural distortion and inhibits the migration of the TM ions in the TMO2 slabs during (de)lithiation. Consequently, LTR exhibits a remarkable cycling stability of 97% capacity retention after 182 cycles, and the average discharge potential drops only 90 mV in 100 cycles. In‐depth studies by electron energy loss spectroscopy and aberration‐corrected scanning transmission electron microscopy demonstrate the Li–Ti mixing structure. The charge compensation mechanism is uncovered with X‐ray absorption spectroscopy and explained with the density function theory calculations. These results show the superiority of introducing transition metal ions into the Li layers in reinforcing the structural stability of the Li‐rich layered metal oxides. These findings shed light on a possible path to the development of Li‐rich materials with better potential retention and a longer lifespan.  相似文献   

11.
The morphology and fine valve structure of the marine epiphytic diatom Cocconeis heteroidea Hantzsch have been investigated. The entire frustule, including the internal and external structure of the raphid valve (RV) and araphid valve (AV), and the complete cingulum, are described using light microscopy and scanning and transmission electron microscopy, using a bleaching method. The strongly sigmoid raphe terminates in elongate hooked helictoglossae internally. The hymenes, with perforations arranged in a centric array, are located near the internal openings of the areolae in the RV. The striae in the AV consist of alveoli occluded by hymenes, that have perforations arranged in a parallel array and are located near the outer surface. The complete cingulum of AV consists of three open bands without fimbriae: a valvocopula, a copula with a ligula and a pleura with a small ligula. The RV has only a valvocopula which is open type and not fimbriate.  相似文献   

12.
Nanohole arrays in metal films allow extraordinary optical transmission (EOT); the phenomenon is highly advantageous for biosensing applications. In this article, we theoretically investigate the performance of refractive index sensors, utilizing square and hexagonal arrays of nanoholes, that can monitor the spectral position of EOT signals. We present near- and far-field characteristics of the aperture arrays and investigate the influence of geometrical device parameters in detail. We numerically compare the refractive index sensitivities of the two lattice geometries and show that the hexagonal array supports larger figure-of-merit values due to its sharper EOT response. Furthermore, the presence of a thin dielectric film that covers the gold surface and mimics a biomolecular layer causes larger spectral shifts within the EOT resonance for the hexagonal array. We also investigate the dependence of the transmission responses on hole radius and demonstrate that hexagonal lattice is highly promising for applications demanding strong light transmission.  相似文献   

13.
In this paper, we present a peculiar metal-dielectric-metal (MDM) nanosandwich grating structure that can achieve extraordinary optical transmission performances at normal incidence in the ultraviolet-visible-near infrared (UV-VIS-NIR) regions. The proposed structure shows three obvious spectrum characteristics: it can obtain high transmittance up to 80 % in NUV region and efficiently blocking visible wavelengths for transverse-magnetic (TM) polarized incidence; a broadband NIR polarizer can be inspired in the wavelength range from 950 to 1400 nm; more surprisingly, these performances do not deteriorated until 30° tilting angle. Compared to other grating structures with single metal overlayer, it shows wider band-stop characteristics and higher broadband transmission transmittance and extinction ratio (ER) in the investigated wavebands. We analyze the underlying physical mechanism by using numerical simulation, which is primarily attributed to metal ultraviolet transparency, surface plasmon polariton (SPP) at metal/dielectric interface, Fabry–Perot (FP)-like cavity mode within this dielectric grating, and optical magnetic resonance especially in the dielectric interlayer of the MDM sandwiched structure. This structure is very important for developing high-performance subwavelength multifunctional integrated optical devices.  相似文献   

14.
The interaction between the two perpendicular Fabry–Perot-like resonances of the antenna–dielectric–slit structure and their influences on the transmission enhancement are investigated with a finite-difference time-domain method. The transmission enhancement is found with the antenna width corresponding to a Fabry–Perot-like resonance condition in the antenna–dielectric–slit structure; otherwise, there is no such an enhancement even when the slit is positioned under the magnetic field maximum. On the other hand, the resonance characteristics of the vertical slit can also modify the field distribution in the horizontal cavity by changing the phase difference at the two antenna ends. It is shown that the enhanced transmission can be realized in a wide range of incident wavelengths from the visible to near-infrared regime for different slit geometries. The physical mechanism of extraordinary optical transmission is discussed with a theoretical dispersion relationship of surface plasmon polaritons based on a metal–insulator–metal cavity model.  相似文献   

15.
We report a 3D plasmonic nanostructure having an extraordinary optical transmission due to localized surface plasmon (LSP) coupling between nanoholes and nanodisks. The nanostructure contains a free-standing gold nanohole array (NHA) film above a cavity and an array of nanodisks at the bottom of the cavity that is aligned with the NHA. For the device, the LSP-mediated resonance position was dependent on the hole and nanodisk diameter as well as the separation distance. Also, the effect of LSP coupling between each hole and corresponding nanodisk became negligible for cavities deeper than 200 nm as observed as a disappearance of the LSP resonance. The greatest LSP resonance transmission and the highest electric field intensity were observed for the structure with the shallowest cavity. In addition, the structure had high surface plasmon resonance sensitivity and may have potential for surface-enhanced Raman spectroscopy and optical trapping applications.  相似文献   

16.
An arrayed structure of asymmetric multilayered ultra-thin metal stripes is proposed to achieve a narrow transmission peak in an ultra-broad transmission valley, which is formed due to the destructive multiple-interference tunneling existed in an ultra-thin metal and dielectric multilayers. The transmission peak is influenced by two resonant modes. One is the coupled gap surface plasmon (cg-SP) resonance mode confined in entire multilayered ridges, the other is the modified gap surface plasmon (g-SP) mode within metal-dielectric layers. Furthermore, the transmission mode and the stopband are tunable in a wide range through designing the dimension parameters. The proposed plasmonic structure is promising for wideband filters.  相似文献   

17.

We present a refractometric sensor realized as a stack of metallic gratings with subwavelength features and embedded within a low-index dielectric medium. Light is strongly confined through funneling mechanisms and excites resonances that sense the analyte medium. Two terminations of the structure are compared. One of them has a dielectric medium in contact with the analyte and exploits the selective spectral transmission of the structure. The other design has a metallic continuous layer that generates surface plasmon resonances at the metal/analyte interface. Both designs respond with narrow spectral features that are sensible to the change in the refractive index of the analyte and can be used for sensing biomedical samples.

  相似文献   

18.
Whereas resonant transverse magnetic transmission across an undulated continuous metal film is achieved with the mediation of plasmon modes excited by the undulation, it is shown here that transverse electric (TE) resonant transmission through a continuous metal film can also be achieved with the mediation of the second-order TE1 mode of a dielectric slab waveguide having the metal film sandwiched at its middle. The demonstration is made by using the materials currently used in the domain of optical security and counterfeit deterrence: ZnS is shown to possibly be a lossless interface/adhesion layer between a polymer and a noble metal for plasmonic resonant elements.  相似文献   

19.

The phenomenon of extraordinary optical transmission (EOT) due to its advantages has been considered by researchers in various applications, and in recent years, many efforts have been made to engineer these structures to get the best possible response for desired applications. In this work, the optical properties of novel binary gold nanohole arrays are investigated theoretically. We engineered the optical response of the system by adjusting the ratio of contribution of surface plasmon polariton (SPP) to localized surface plasmon resonance (LSPR) through the manipulation of the geometrical properties. The changes in the topology of this nanohole array affected the intensity and the wavelength of transmission peaks. The sensitivity of the optical response to the refractive index was also investigated. The designed structure is a good candidate for use as a polarization-independent optical label-free sensor.

  相似文献   

20.
The high performance of electrochemical energy‐storage devices relies largely on scrupulous design of nanoarchitectures and smart hybridization of bespoke active materials. Carbon nanopsheres (CNSs) are widely used for energy storage and conversion devices. Here, the directional assembly of CNSs on a vertical‐standing metal scaffold into a core/shell array structure is reported. The method uses a three‐step all‐solution synthesis strategy (chemical bath deposition, electrodeposition, and hydrothermal) and begins from ZnO microrod arrays as a sacrificial template. The self‐assembly of CNSs can be correlated to a simultaneous etching effect to the ZnO accompanying the polymerization of glucose precursor. The Ni microtube/CNSs arrays are selected as an example for structural and electrochemical characterizations. The novel type of metal/CNSs arrays is demonstrated to be a highly stable electrode for supercapacitors. The electrodes of metal/CNSs arrays are assembled into symmetric supercapacitors and exhibit high capacitances of 227 F g?1 (at 2.5 A g?1) and an outstanding cycling stability with capacitance retention of 97% after 40 000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号