首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modeling of nonlinear optical properties of spherical core–shell gold–silver and silver–gold nanoparticles (NPs) placed in water was carried out on the base of extended Mie theory. Efficiency cross sections of absorption σ abs, scattering σ sca, and extinction σ ext of radiation with wavelengths λ?=?400 and 532 nm for core–shell NPs with constant core radii r 00?=?5, 10, 20, and 40 nm and in the range of relative radii r 1/r 00?=?1–8 were calculated (r 1 is the radius of shell). Dependences of optical properties of gold–silver and silver–gold NPs on increasing of core radius r 0 in the range 0???r 1 under condition r 1?=?const and increasing of r 0 under r 1???r 0?=?const were investigated. Results show the nonlinear behavior of optical properties of core–shell gold–silver and silver–gold NPs on radiation wavelengths (optical indexes of metals), different core and shell radii, and their correlation, on relative NP radii r 1/r 00. An increase and decrease of absorption, scattering, and extinction efficiency cross sections of core–shell NPs with changing of wavelengths, core and shell radii, and relative NP radii r 1/r 00 are established. These dependences can be used for experimental investigation of the interesting first stages of shell formation on core and optical determination of core–shell NP parameters.  相似文献   

2.
The bimetallic core–shell nanoparticles show unique plasmonic properties and their preparations and characterizations are currently under investigation. A new type of Au core–Ag shell (Au@Ag) nanoparticles is prepared by sandwiching the chemically attached Raman reporter molecules (RRMs) and a 12-base-long oligonucleotide between the 13 nm average size core-gold nanoparticles (AuNPs) and 9 nm and 21 nm average size of Ag shell. The synthesized Au@Ag nanoparticles are tested for their surface-enhanced Raman scattering (SERS) performance. It is found that the chemical attachment of the oligonucleotides along with the RRM improved the enhancement in Raman scattering more than one order of the magnitude with the Au@Ag nanoparticles with an average 9-nm shell thickness while the Au@Ag nanoparticles with 21 nm average shell thickness have poor SERS activity. A minimum enhancement factor of 1.0 × 107 is estimated for the SERS active oligonucleotide-mediated Au@Ag nanoparticles. The approach may provide new routes for preparation of highly sensitive new generation of bimetallic core–shell nanoparticles.  相似文献   

3.
We demonstrate the synthesis and characterization of core–shell nanowires consisting of a non-centrosymmetric KNbO3 core and a gold shell. This type of nanostructure combines the nonlinear optical properties of the core and the plasmonic resonance of the shell in the near infrared spectral range. We report successful spectroscopic measurements on coated single wires to characterize the resonant behavior of the gold shell. We present a theoretical model based on the electrostatic approximation to estimate the enhancement of second-harmonic generation in a nanowire due to the shell. It suggests a possible enhancement factor of up to 4,000 for a system with a nanoshell of 16 nm thickness at a wavelength of 900 nm.  相似文献   

4.
Modeling of optical properties of spherical core–shell gold–silver and silver–gold nanoparticles (NPs) was carried out based on extended Mie theory for radiation wavelengths in the range 300?≤?λ?≤?650 nm. Efficiency factors of absorption, scattering, and extinction of radiation by core–shell NPs in the range of the radii 5–100 nm and in the range of shell thicknesses 0–40 nm were calculated. Results show the nonlinear dependences of optical properties of core–shell gold–silver and silver–gold nanoparticles on radiation wavelengths, core radii, and shell thicknesses. These results can be applied for photonic technologies of nanoparticles.  相似文献   

5.
Nonlinear (NL) optical properties of composite materials containing metallic core–dielectric shell nanoparticles in aqueous solution were investigated numerically using the Maxwell–Garnett model and the degenerate electron gas model. Influence of geometry and excitation laser intensity was considered to describe the local field factor and the third-order NL susceptibility.  相似文献   

6.
This work investigates the localized surface plasmon resonance (LSPR) of β-Sn also known as white tin. Recently, studies on arrays of β-Sn nanoparticles have shown that these arrays possess strong optical features caused by diffractive effects in the particle grating (Johansen et al., Phys Rev B 84:113405–113408, 2011). In the presence of the grating, the LSPR could not clearly be distinguished in the spectra. To get a better understanding of the plasmonic properties of the particles, we have now eliminated the diffractive effects by placing the particles in a random distribution. The particles were fabricated by electron beam lithography on a fused silica substrate and investigated by optical transmission measurements. In the random configuration, a clear LSPR is observed at 530 nm for particles with a diameter of 155 nm and a height of 50 nm.  相似文献   

7.
Negative curvature-dependent localized surface plasmon resonance (LSPR) properties of concentric core–shell metallic nanostructure have been studied using quasistatic approach and plasmon hybridization theory. Whether in single-layered gold nanoshell or double gold nanoshells, the oscillating surface charges always concentrate close to the poles of the metal surface with negative curvature, which results in the anisotropic local electric field distribution and affects both the inter-surface plasmonic coupling and inter-shell plasmonic coupling. Therefore, the change of the radius of the gold surface with negative curvature could modulate the plasmon hybridization and lead to the LSPR shifting. The physical mechanism of the negative curvature-dependent LSPR presents a potential for design and fabrication of nanoscale optical device based on core–shell type metallic nanostructures.  相似文献   

8.
Nanocomposite (NC) thin films with noble metal nanoparticles embedded in a dielectric material show very attractive plasmonic properties due to dielectric and quantum confinement effects. For single component nanoparticles (NPs), the plasmon resonance frequency can only be tuned in a narrow range. Much interest aroused in bimetallic nanoparticles (BNPs), however many wet chemical approaches do not allow large variation of the NP alloy composition and filling factor. Here, we report a vapor phase co-deposition method to produce polymer–metal NCs with embedded Ag1 − x Cu x alloy particles. The method allows production of NPs with controlled alloy composition (x), metal filling (f) and nanostructure in a protecting Teflon AF matrix. The nanostructure size and shape were characterized by transmission electron microscope. Energy dispersive X-ray spectroscopy was used to determine x and f. The optical properties and the position of surface plasmon resonances were studied by UV–Vis spectroscopy. The plasmon resonances can be tuned over a large range of the visible spectrum associated with the change in x, f, and nanostructure. For low filling factors and small particle sizes, only one resonance peak was observed. This is attributed to enhanced miscibility at the nanoscale. Double plasmon resonances were seen for larger particle sizes in accord with phase separation expected from the bulk phase diagram and were explained in terms of the formation of core-shell structures with Cu core and Ag shell. Changes upon annealing at 200 °C are also reported.  相似文献   

9.
Linear and nonlinear (NL) optical properties of colloids containing metallic core–dielectric shell nanoellipsoids (NEs) were studied using the Maxwell-Garnett model. Influence of the NE geometry and the linear refraction index of the shell and the host on the linear optical properties and the enhancement factor due to the local field factor of metallic NEs in aqueous solution were analyzed. The expression for the third-order NL susceptibility for this composite material was obtained based on the NL response of aligned NEs. Results show that the plasmon resonance peak (PRP) and the enhancement factors can be tuned changing the NE geometry and the dielectric properties of the shell and the host.  相似文献   

10.
As the fundamental understanding of metal–light interactions gains solid grounds, further research has been devoted to construct novel structures that take full advantage of such unique interactions, which is called plasmonics. In this report, the preparation of Au–Ag core–shell structures obtained by coating the Au surface with peptide and Raman reporter molecule and depositing an Ag layer on it is reported. The prepared Au–Ag NPs are tested for their surface-enhanced Raman scattering (SERS) performance. The negatively charged peptides with three different lengths, which are 3 (P1), 15 (P2), and 21 (P3) amino acid long, were chemically attached to 13 nm AuNPs along with Raman reporter molecule, carboxytetramethylrhodamine, and these modified AuNPs were coated with three different shell thickness of Ag metal. The prepared Au–Ag NPs were tested for their SERS performance and found that the Au–Ag NPs prepared with P2 and thickest shell performs best as SERS label.  相似文献   

11.
In the present study, we have investigated the extinction spectra of coated sphere (using dipole model) with different core–shell radius, in which the core is TiO2 and the shell is made up of silver or gold nanoparticles. Nanoparticles exhibit surface plasmon resonance peak; these plasmonic peaks are highly tunable in wavelength range of 300 to 1,100 nm; in fact, the blue and red shifting of resonance peak highly depends on the core–shell thickness. The broadness of resonance peaks are analysed in terms of full width at half maxima (FWHM), and the width of these resonance peaks is also the function of core–shell radius.  相似文献   

12.
We have theoretically studied and optimized the field enhancement and temporal response of single and coupled bimetal Ag/Au core–shell nanoparticles (NPs) with a diameter of 160 nm and compared the results to pure Ag and Au NPs. Very high-field enhancements with an amplitude reaching 100 (with respect to the laser field centered at 800 nm) are found at the center of a 2-nm gap between Ag/Au core–shell dimers. We have explored the excitation of the bimetal core–shell particles by Fourier transform-limited few-cycle optical pulses and identified conditions for an ultrafast plasmonic decay on the order of the excitation pulse duration. The high-field enhancement and ultrafast decay makes bimetal core–shell particles interesting candidates for applications such as the generation of ultrashort extreme ultraviolet radiation pulses via nanoplasmonic field enhancement. Moreover, in first experimental studies, we synthesized small bimetal Ag/Au core–shell NPs and compared their optical response with pure Au and Ag NPs and numerical results.  相似文献   

13.
Plasmonics - In present paper, a design of the graphene-coated metal (Ag/Au/Cu) nano-disk (2D) and nano-needle (1D) has been studied within the quasi-static approximation. The core@shell...  相似文献   

14.
Plasmonic circular dichroism (CD) responses of hybrid nanostructures containing noble metal nanoparticles and chiral molecules have received increasing interest with various applications in nanophotonics. Chiral biomolecules show strong CD signals typically found in the ultraviolet region, whereas, in the visible range, they produce a weak signal. Strengthening the CD signal in the visible region is of high importance, which could be achieved through fabrication of novel hybrid nanostructures. Herein, gold nanoparticles (GNPs) have been assembled via DNA linker to investigate the possibility of enhancing plasmonic CD signal in the visible range. DNA-linked assemblies with pre- and postannealed conditions were characterized by ultraviolet–visible spectroscopy, dynamic light scattering (DLS), and CD spectropolarimetry. In the presence of DNA linker with sticky ends, the aggregation phenomenon was traced by red shifts of surface plasmon resonance of nanoparticles. Time-dependent hybridization of single-stranded “sticky ends” with DNA-conjugated GNPs and increased probability of hydrogen bond formation lead to enhancement of CD signals in the ultraviolet region. Complexation of biomolecule and nanoparticle assemblies induced enhanced CD signals in the visible range, which was noticed both before and after purification. DLS characterization of the assemblies also confirmed the difference in the size of aggregates, which could be controlled by the linker molecules. This investigation encourages possibility of utilizing plasmonic CD technique as a tool for tracing fabricated nanostructure assemblies with enhanced characterization possibility.  相似文献   

15.
Plasmonics - Nowadays, carbon quantum dots (CQDs) with size less than 10 nm have emerged as one of the most exciting areas of chemical research in the class of inorganic nanomaterials....  相似文献   

16.
Liang  Shan  Li  Jian-Bo  Li  Min  Tang  Xionggui 《Plasmonics (Norwell, Mass.)》2018,13(1):181-187
Plasmonics - Au–CdS core–shell nanodogbones with controllable shell thickness were facilely synthesized by one-pot method. Their tunable optical properties have been investigated with...  相似文献   

17.
In the last years, there has been a growing interest in the study of transition metal nanoparticles (Nps) due to their potential applications in several fields of science and technology. In particular, their optical properties are governed by the characteristics of the dielectric function of the metal, its size and environment. This work analyses the separated contribution of free and bound electrons on the optical properties of copper Nps. Usually, the contribution of free electrons to the dielectric function is corrected for particle size through the modification of the damping constant, which is changed as usual introducing a term inversely proportional to the particle’s radius to account for the extra collisions with the boundary when the size approaches the electronic mean free path limit (about 10 nm). For bound electron contribution, the interband transitions from the d-band to the conduction band are considered together with the fact that the electronic density of states in the conduction band must be made size-dependent to account for the larger spacing between electronic energy levels as the particle decreases in size below 2 nm. Taking into account these specific modifications of free and bound electron contributions to the dielectric function, it was possible to fit the bulk complex dielectric function, and consequently, determine optical parameters and band energy values such as the coefficient for bound electron contribution Q bulk?=?2?×?1024, gap energy E g?=?1.95 eV, Fermi energy E F?=?2.15 eV, and damping constant for bound electrons γ b?=?1.15?×?1014 Hz. With both size-dependent contributions to the dielectric function, extinction spectra of copper Nps in the subnanometer radius range can be calculated using Mie’s theory and its behaviour with size can be analysed. These studies are applied to fit experimental extinction spectra of very small spherical core–shell Cu–Cu2O Nps generated by ultrafast laser ablation of a solid target in water. Theoretical calculations for subnanometric core radius are in excellent agreement with experimental results obtained from core–shell colloidal Nps. From the fitting, it is possible determining core radius and shell thickness of the Nps, showing that optical extinction spectroscopy is a good complementary technique to standard high-resolution electron microscopy for sizing spherical nanometric-subnanometric Nps.  相似文献   

18.
A series of blends of polydimethylsiloxane (PDMS) and indomethacin (IMC), containing 20–80 wt.% IMC were obtained and characterized by differential scanning calorimetry, Fourier transform–infrared spectroscopy, and powder X-ray diffraction in order to observe the mutual influence of the two components. The main thermal transitions of PDMS remained un-changed. Both the solvent (tetrahydrofuran, THF) and the PDMS influenced the crystalline form of IMC. The blends were subsequently re-dissolved in THF, with or without cross-linking reagents added and precipitated into diluted aqueous solutions of siloxane-based surfactants. The resulted nanoparticles were analyzed by dynamic light scattering and scanning electron microscopy. Most of the particles had diameters between 200 and 300 nm. The surfactants, the IMC content and the cross-linking influenced the particles size and polydispersity, as well as the nanoparticle yield. The maximum drug release from selected aqueous formulations was 30%.  相似文献   

19.
The outstanding chemical stability of Au and intense localized surface plasmon resonance of Ag make it possible to obtain a nanostructure with a good balance of good chemical stability and optical response. In this paper, we investigated the relationship between optical properties and the composition and size of Ag–Au alloy nanoparticle with numerical calculation by applying experimental data. Simplified empirical formulas are proposed through numerical simulation. The properties of extinction efficiency and the relative contribution of scattering and absorption efficiency to the extinction efficiency have been researched in detail. The calculated result and experimental data has been compared, and good agreement is obtained. Our work contributes greatly to catalysis application of Au–Ag alloy NPs in specific regions.  相似文献   

20.
There is increasing interest in tuning the physical properties of semiconductor nanostructures using metal nanoparticles. In this work, ZnO nanosphere covered with Ag nanoparticles were synthesized using gamma–radiation-assisted method. The amount of deposited Ag nanoparticles is controlled by changing irradiation dose in the range of 30–100 kGy in order to tune the semiconductor–metal interaction. The successful deposition of Ag on the ZnO nanoparticles is examined by analyzing the morphology, microstructure, optical, and magnetic properties of ZnO/Ag nanoparticles through field emission scanning electron (FESEM), microscopy X-ray diffraction spectra, UV-visible absorption, photoluminescence measurement, and vibrating sample magnetometer. FESEM and elemental mapping results confirmed that Ag nanoparticles have been concentrated at the surface of spherical ZnO particles. Moreover, formation of pure metallic Ag nanoparticles has been confirmed by XRD analysis. UV-visible absorption spectra of obtained ZnO/Ag showed two combined peaks, a weak peak at the shoulder around 360 nm corresponds to ZnO and a sharp absorption at 420 nm refers to spherical Ag nanoparticles. Obtained results from photoluminescence revealed that the near-band-edge emission and defect-related visible emission bands of ZnO could be enhanced dramatically at the same time by deposition of Ag nanoparticles, which was ascribed to localized surface plasmon–exciton coupling and surface plasmon scattering. Controlling the semiconductor and metal coupling effect is interesting because of its application in highly efficient optoelectronic devices and biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号