首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas noble metal films deposited directly onto an undulated photosensitive polymer exhibit plasmon-mediated resonant transmission of free-space waves accompanied by excess losses of approximately 40 %, adequate hard baking of the photosensitive polymer, together with pre- and post-deposition of nanometer-thick ZnS or MgF2 dielectric interfacial layers, restores excellent propagation conditions for the long-range plasmon mode, reducing resonant transmission excess losses to 10 %, and creating the conditions for the experimental evidence of the long-sought plasmonic anomalous reflection phenomenon.  相似文献   

2.
Frequency of variations of surface plasmon intensity at the input of a plasmonic amplifier is called modulation–frequency. High modulation–frequency behavior of a Schottky junction-based plasmonic amplifier has been in the focus of this paper. Both small signal and large signal conditions have been considered. In small signal condition, an analytical solution of the rate equations of the electrons and photons has been presented which its results are in accordance with the simulation results of a harmonic balance method. For an amplifier of 100 μm length, the small signal gain has been 14.62 dB from both methods. Large signal behavior has been described by IIP2 and IIP3 in a two tone test which has been implemented by the harmonic balance method. IIP2 and IIP3 of the plasmonic amplifier of this work at 1 GHz are –21.2 and –19.95 dBm, respectively, and their values increase with frequency.  相似文献   

3.
The plasmonic effect is introduced in solar thermal areas to enhance light harvest and absorption. The optical properties of plasmonic nanofluid are simulated by finite difference time domain (FDTD) method. Due to the excitation of localized surface plasmon resonance (LSPR) effect, an intensive absorption peak is observed at 0.5 μm. The absorption characteristics are sensitive to particle size and concentration. As the particle size increases, the absorption peak is broadened and shifted to longer wavelength. The absorption of SiO2/Ag plasmonic nanofluid is improved gradually as the volume concentration increases, especially in the UV region. The absorption edge is shifted from 0.6 to 1.0 μm as the volume concentration increases from 0.001 to 0.01. The thermal simulation of suspended SiO2/Ag nanoparticle shows a uniform temperature rise of 17.91 K under solar irradiation (AM 1.5), while under the same condition, the temperature rises in Ag nanoparticle and Al nanoparticle are 11.12 and 5.39 K, respectively. The core/shell plasmonic nanofluid exhibits a higher photothermal performance, which has a potential application in photothermal areas. A higher temperature rise can be obtained by improving the incident light intensity or optical absorption properties of nanoparticles.  相似文献   

4.
A photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) probe with gold nanowires as the plasmonic material is proposed in this work. The coupling characteristics and sensing properties of the probe are numerically investigated by the finite element method. The probe is designed to detect low refractive indices between 1.27 and 1.36. The maximum spectral sensitivity and amplitude sensitivity are 6 × 103 nm/RIU and 600 RIU?1, respectively, corresponding to a resolution of 2.8 × 10?5 RIU for the overall refractive index range. Our analysis shows that the PCF-SPR probe can be used for lower refractive index detection.  相似文献   

5.
In this paper, we proposed plasmonic dimers consisted of two evanescent field coupled graphene monolayer nanodisks. The electromagnetic properties including the split modes with non-degenerate wavelengths, enhancement of the quality factors (Q factors) and mode areas, and the coupling between the fundamental and the first-order whispering-gallery modes are numerically predicted and analyzed systematically. Compared with the single graphene nanodisk, the Q factor of TM4,1 reaches 356 in a dimer with a radius of 5 nm of each nanodisk and an inter-disk gap of 0.4 nm, where the corresponding mode area is as small as 6.88?×?10‐?5(λ 0)2. In addition, the enhanced performances of size-mismatched coupled graphene plasmonic dimers are investigated. This graphene monolayer plasmonic dimer could be one of the fundamental components in the future ultra-high density plasmonic circuit technique, on-chip plasmonic interconnect, and transformation plasmonics. It also could be used as the test-beds for added explorations of cavity quantum electrodynamic experiments.  相似文献   

6.
Chatzianagnostou  E.  Ketzaki  D.  Dabos  G.  Tsiokos  D.  Weeber  J.-C.  Miliou  A. 《Plasmonics (Norwell, Mass.)》2019,14(4):823-838

Herein, we present a design analysis and optimization of open-cladded plasmonic waveguides on a Si3N4 photonic waveguide platform targeting CMOS-compatible manufacturing. For this purpose, two design approaches have been followed aiming to efficiently transfer light from the hosting photonic platform to the plasmonic waveguide and vice versa: (i) an in-plane, end-fire coupling configuration based on a thin-film plasmonic structure and (ii) an out-of-plane directional coupling scheme based on a hybrid slot waveguide. A comprehensive numerical study has been conducted, initially deploying gold as the reference metal material for validating the numerical models with already published experimental results, and then aluminum and copper have been investigated for CMOS manufacturing revealing similar performance. To further enhance coupling efficiency from the photonic to the plasmonic part, implementation of plasmonic tapering schemes was examined. After thorough investigation, plasmo-photonic structures with coupling losses per single interface in the order of 1 dB or even in the sub-dB level are proposed, which additionally exhibit increased tolerance to deviations of critical geometrical parameters and enable CMOS-compatible manufacturing.

  相似文献   

7.
Fano resonances are numerically predicted in an ultracompact plasmonic structure, comprising a metal-isolator-metal (MIM) waveguide side-coupled with two identical stub resonators. This phenomenon can be well explained by the analytic model and the relative phase analysis based on the scattering matrix theory. In sensing applications, the sensitivity of the proposed structure is about 1.1?×?103 nm/RIU and its figure of merit is as high as 2?×?105 at λ?=?980 nm, which is due to the sharp asymmetric Fano line-shape with an ultra-low transmittance at this wavelength. This plasmonic structure with such high figure of merits and footprints of only about 0.2 μm2 may find important applications in the on-chip nano-sensors.  相似文献   

8.
We propose an ultrasmall plasmonic cavity based on the channel waveguides for chemical sensing. The plasmonic mode gap due to cutoff angular frequency enables strong optical confinement in a subwavelength volume and suppression of radiation loss. Due to strong field overlap of the surface plasmon polariton mode with environmental material, large sensitivity (1,100 nm/refractive index unit) and a high figure of merit (330) are achieved in the plasmonic cavity with a small physical size of 600?×?800?×?2,500 nm having a telecommunication resonant wavelength. This plasmonic cavity can introduce a broad range of applications including biochemical sensing and strong light–matter interactions.  相似文献   

9.
The sensitivity of the wavelength position of localized surface plasmon resonance (LSPR) in metal nanostructures to local changes in the refractive index has been widely used for label-free detection strategies. Tuning the optical properties of the nanostructures from the visible to the infrared region is expected to have a drastic effect on the refractive index sensitivity. Here, we theoretically investigate the optical response of a newly designed plasmonic interface to changes in the bulk refractive index by the finite difference time domain method. It consists of a structured interface, where the planar interface is superposed with dielectric pillars 30 nm in height and 125 nm in length with a separation distance of 15 nm. The pillars are covered with U-shaped gold nanostructures of 50 nm in height, 125 nm in length, and 5 nm of gold base thickness. The whole structure is finally covered with a 5-nm thick dielectric layer of n 2?=?2.63. This plasmonic structure shows bulk refractive index sensitivities up to 1750 nm/RIU (RIU : refractive index unit) in the near infrared (λ?=?2621 nm). The enhanced sensitivity is a consequence of the extremely enhanced electrical field between the gold nanopillars of the plasmonic interface.  相似文献   

10.
An electro-absorption modulator based on indium tin oxide is proposed by constructing a waveguide consisting of metal-dielectric-ITO-dielectric-Si stack. Applying a negative voltage bias on the ITO layer, carrier accumulation occurs at both dielectric-ITO interfaces, which dramatically changes the guided mode properties due to the epsilon-near-zero effect. By tuning the real part of the permittivity around zero, the guided plasmonic mode concentrates in either ITO or dielectric layers, resulting in a high propagation loss. These dual carrier accumulation layers significantly improve the extinction ratio of the modulator. A further improvement is obtained by using high refractive index dielectric thin layers, which provides a strong optical confinement in the carrier accumulation layers. The dual carrier accumulation layer device shows a 200 % increase of the modulation efficiency compared to a single accumulation layer design. A modulation depth of 9.9 dB/μm can be achieved by numerical simulation.  相似文献   

11.
Polarization-dependent light transmission property is investigated in two-dimensional plasmonic ladder-like structure in the Near-infrared (NIR) regime of 900 to 1600 nm. The plasmonic ladder-like structures are fabricated using cost-effective laser interference lithography. Optical transmission studies reveal that in the stated NIR regime, the structure has nearly 30 % absolute transmission with respect to air when the long axis is aligned parallel to the polarization axis of the incident excitation and has negligible transmission at the crossed polarization state. The findings have potential implications in designing large area flat NIR polarizers.  相似文献   

12.
The efficiency of acoustic communication depends on the power generated by the sound source, the quality of the environment across which signals propagate, the environmental noise and the sensitivity of the intended receivers. Eupsophus calcaratus, an anuran from the temperate austral forest, communicates by means of an advertisement call of weak intensity in a sound-attenuating environment. To estimate the range over which these frogs communicate effectively, we conducted measurements of sound level and degradation patterns of propagating advertisement calls in the field, and measurements of auditory thresholds to pure tones and to natural calls in laboratory conditions. The results show that E. calcaratus produces weak advertisement calls of about 72 dB sound pressure level (SPL) at 0.25 m from the caller. The signals are affected by attenuation and degradation patterns as they propagate in their native environment, reaching average values of 61 and 51 dB SPL at 1 and 2 m from the sound source, respectively. Midbrain multi-unit recordings show a relatively low auditory sensitivity, with thresholds of about 58 dB SPL for conspecific calls, which are likely to restrict communication to distances shorter than 2 m, a remarkably short range as compared to other anurans.  相似文献   

13.
We report the fabrication and characteristics of a novel graphene-Ag0 hybrid plasmonic nanostructure-based photodetector exhibiting moderately high responsivity (~28 mA/W) and spectral selectivity (~510 nm) in the visible wavelength. The formation of highly stable Ag0 nanoparticles with an average size of 40 nm is observed within the graphene layers, resulting in n-type doping of hybrid material. The absorption peak of graphene-Ag0 hybrid is redshifted to the visible wavelength (~510 nm) from the plasmonic Ag peak (~380 nm) in agreement with the optical simulation results for embedded metal nanoparticles. The study demonstrates the synergistic effect of the graphene-metal nanocomposite, which appears attractive for applications in graphene-based photonic devices.  相似文献   

14.
Abstract: The transmission losses with distance of four pure tones (0.5, 1, 2, 4 kHz) were measured in the air 9 cm above the surface of the coastal waters in the Bay of Fundy. The study was conducted between May and July 1992, on warm days with low winds. The measured transmission losses were as much as 11 dB less than predicted by spherical spreading (6 dB/distance doubled), at 400 m (0.5 kHz). This enhanced sound transmission is probably due to the air temperature profile which increases with height above the water's surface. Such a profile causes sound waves to refract towards the water, thereby reducing spreading losses. High-frequency sound absorption negates enhanced transmission at 4 kHz, at distances over 500 m. On days with low winds and low ambient noise levels, a seal pup calling at 90 dB re 20, μPa at 0.5 kHz should be detectable by the mother up to 1 km away, and may be audibly recognizable up to 140 m away.  相似文献   

15.
Glancing angle deposition is a powerful method for direct fabrication of nanostructures on various substrates. In this research, GLAD method has been used to fabricate Ag nanostructures with columnar morphology for refractive index sensing applications. The morphology and plasmonic properties of the nanostructures are controlled by changing deposition parameters such as glancing angle, speed of azimuthal rotation of the substrate, and the height of deposited nanostructures. The results show that increasing the deposition thickness from 200 to 500 nm leads to narrowing the plasmonic peak, which mainly relates to increment of the distance between larger nanostructures. By changing the glancing angle between 86° to 80°, the narrowest plasmonic peak corresponding to the greatest sensitivity has been obtained for the film deposited at the angle of 82°. Also, increment of the rotation speed of the samples leads to narrowing of the plasmonic peaks. By measuring the refractive index sensitivity (RIS) of the nanostructures, a best sensitivity of 154 nm/RIU has been obtained. Finally, we investigated the stability of Ag nanostructures in deionized water by introducing a new stabilizing technique in which a thin Au layer is coated on the Ag nanostructures. This technique has the merits of simultaneously protecting the Ag nanostructures against oxidation and keeping their refractive index sensitivity high enough for long time usages.  相似文献   

16.
Defective colloids of blue MoOx nanosheets were prepared by anodizing exfoliation method in water. This colloidal solution exhibits an optical plasmonic absorption band in the infrared region at about 760 nm. Merely mixing HAuCl4 solution with the MoOx leads to loss of the blue color, decaying of 760 nm plasmonic peak and simultaneous formation of the gold plasmon absorption peak at 550–570 nm. Some spectral variations in gold plasmonic peak and MoOx optical band gap were observed for Mo:Au ratio of 10:1, 20:1, 30:1, and 40:1. The size of the gold nanoparticles was in the 5–6 nm range with fcc crystalline structure. X-ray photoelectron spectroscopy (XPS) revealed that the initial solution contains Mo5+ states and hydroxyl groups, which after reduction, hydroxyl groups are eliminated and the Mo5+ states converted to Mo6+. The obtained Au-MoO3 colloids have a gasochromic property in which they are colored back to blue in the presence of hydrogen gas and the molybdenum oxide absorption peak recovered again. Furthermore, it was observed that both gold and Mo oxide plasmonic peaks redshift by insertion of hydrogen gas which is attributed to change in solution refractive index and formation of defect concentration.  相似文献   

17.
We suggest semi-analytical approach to study the optical properties of noble metal nanoparticles and their interaction to the perovskite material (methyl ammonia lead halide: CH3NH3PbI3). Metal nanoparticles embedded in perovskite matrix exhibits broadband surface plasmon resonances, and the tunability of these plasmonic resonances is highly sensitive to particle size. The calculation of optical cross section have been done using Mie scattering theory which is applicable to arbitrary size and spherical-shape metal nanoparticles. We have taken five different radii ranging from 15 to 100 nm to understand the plasmonic resonances and its spectral width in the wavelength range 300 to 800 nm. Out of these noble metal nanoparticles, silver have highest scattering efficiency nearly of the order of 18 for the case of 15 nm radii at resonance wavelength 613 nm. Our finding reveals a new concept to understand the applications of plasmonic resonances in order to enhance the photon absorption inside the thin film of perovskite.  相似文献   

18.
The present work is reporting on the fabrication of localized surface plasmonic resonant (LSPR) gold nano-structures on glass substrate by using different high annealing temperatures (500 °C, 550 °C, 600 °C) of initially created semi-continue gold films (2 nm and 5 nm) by the electron beam evaporation technique. Interestingly, well-defined gold nano-structures were also obtained from continuous 8 nm evaporated gold film - known as the value above gold percolated thickness - once exposed to high temperatures. The surface morphology and plasmonic spectroscopy of “annealed” nano-structures were controlled by key experimental parameters such as evaporated film thickness and annealing temperature. By using scanning electron microscopy (SEM) characterization of annealed surface it was noticed that the size and inter-particle distance between nano-structures were highly dependent on the evaporated thin film thickness, while the nanoparticle shape evolution was mainly affected by the employed annealing temperature. Due to the well-controlled morphology of gold nano-particles, prominent and stable LSPR spectra were observed with good plasmon resonance tunability from 546 nm to 780 nm that recommend the developed protocol as a robust alternative to fabricate large scale LSPR surface. An example of a LSPR-immunosensor is reported. Thus, the monoclonal anti-atrazine antibodies immobilizion on the “annealed” gold nano-structures, as well as the specific antigen (atrazine) recognition were monitored as variations of the resonance wavelength shifts and optical density changes in the extinction measurements.  相似文献   

19.
The polarization filter characteristics of Au wires and liquid crystal infiltrated photonic crystal fibers are investigated by using the finite element method. The nematic liquid crystal of E7 being injected into cladding air holes is benefit to induce large birefringence under controllable electrical field. The simulation results show that the surface plasmon resonance is strongly inspired by core modes in y-polarized direction. Meanwhile, the coupling between core modes in x-polarized direction and surface plasmon polaritons modes is faint. The confinement losses can achieve 446 dB/cm in y-polarized direction and 0.8 dB/cm in x-polarized direction at wavelength of 1550 nm in one of our designed fiber. The effects of fiber structural parameters and temperature are investigated with a view of tuning and optimizing the confinement loss spectrum. Own to the large contrast of confinement losses in two orthogonal directions, the designed Au wires and liquid crystal infiltrated photonic crystal fibers promise candidate for tunable polarization filter devices.  相似文献   

20.
The role of Au@SiO2 core-shell nanoparticles on optical properties of perovskite solar cells has been explored using both the theoretical computations and the experiments. A quasi-static model is used to study the surface plasmon resonances (SPRs) of Au@SiO2 core-shell nanospheres. Au@SiO2 core-shell nanoparticles, with varying shell thickness and core radius, were assumed to be embedded in methylammonium lead triiodide (CH3NH3PbI3) perovskite active layer. Enhanced absorption in the active layer is obtained due to the near-field plasmonic effect of the embedded core-shell nanoparticles. Theoretical modelling shows that a shell thickness of 1 nm and core diameter of 20 nm provide absorption enhancement in the orange-red region of the electromagnetic spectrum. Experiments performed using ~20-nm-sized Au@SiO2 core-shell nanoparticles (with a shell thickness of ~1 nm) clearly demonstrate the enhanced absorption and the resulting enhancement in photocurrent due to the plasmonic effects. An efficiency enhancement of over 18 % is obtained for the best plasmonic perovskite solar cell containing Au@SiO2 nanoparticles in Au@SiO2-TiO2 weight ratio of ~1 %. Incident photon-to-current conversion efficiency (IPCE) data also showed enhancement in photocurrent for the plasmonic device. The quasi-static modelling approach provides a good correlation between theory and experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号