首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. Although nitrilases from several sources have been characterized, there exists a scope for identifying broad spectrum nitrilases exhibiting higher substrate tolerance and better thermostability to develop industrially relevant biocatalytic processes. Through genome mining, we have identified nine novel nitrilase sequences from bacteria and evaluated their activity on a broad spectrum of 23 industrially relevant nitrile substrates. Nitrilases from Zobellia galactanivorans, Achromobacter insolitus and Cupriavidus necator were highly active on varying classes of nitriles and applied as whole cell biocatalysts in lab scale processes. Z. galactanivorans nitrilase could convert 4-cyanopyridine to achieve yields of 1.79 M isonicotinic acid within 3 h via fed-batch substrate addition. The nitrilase from A. insolitus could hydrolyze 630 mM iminodiacetonitrile at a fast rate, effecting 86 % conversion to iminodiacetic acid within 1 h. The arylaliphatic nitrilase from C. necator catalysed enantioselective hydrolysis of 740 mM mandelonitrile to (R)-mandelic acid in 4 h. Significantly high product yields suggest that these enzymes would be promising additions to the suite of nitrilases for upscale biocatalytic application.  相似文献   

2.
Fungal nitrilases as biocatalysts: Recent developments   总被引:1,自引:0,他引:1  
Of the numerous putative fungal nitrilases available from protein databases only a few enzymes were purified and characterized. The purified nitrilases from Fusarium solani, Fusarium oxysporum f. sp. melonis and Aspergillus niger share a preference for (hetero)aromatic nitriles, temperature optima between 40 and 50 °C and pH optima in the slightly alkaline region. On the other hand, they differ in their chemoselectivity, i.e. their tendency to produce amides as by-products. The production of fungal nitrilases is increased by up to three orders of magnitude on the addition of 2-cyanopyridine to the culture media. The whole-cell and subcellular biocatalysts were immobilized by various methods (LentiKats®; adsorption on hydrophobic or ion exchange resins; cross-linked enzyme aggregates). Operational stability was examined using continuous stirred membrane bioreactors. Fungal nitrilases appear promising for biocatalytic applications and biodegradation of nitrile environmental contaminants.  相似文献   

3.
The nitrilases from Fusarium solani O1 and Aspergillus niger K10 showed a broad substrate specificity for carbocyclic and nonaromatic heterocyclic amino nitriles, the preferred substrates being five-membered γ-amino nitrile (±)-1a, six-membered γ-amino nitriles (±)-3a, (±)-5a and (±)-6a, pyrrolidine-3-carbonitriles (±)-9a and (±)-10a as well as piperidine-4-carbonitriles 14a and 15a. Both enzymes showed a strong diastereopreference for cis- vs. trans-γ-amino nitriles. The electronic and steric effects of N-protecting groups affected the reactivity of the nitriles. Amides as by-products of the nitrilase-catalyzed reaction were produced from heterocyclic amino nitriles (±)-9a, (±)-10a, 14a and 15a by the A. niger enzyme but only from nitrile (±)-9a by the F. solani enzyme.  相似文献   

4.
Two genes encoding nitrilases with different properties have been found in an Alcaligenes denitrificans C-32 strain with high nitrilase activity that is currently used as a biocatalyst for commercial ammonium acrylate production. Both genes were expressed in E. coli, and the properties of the recombinant nitrilases were studied. One of these genes, which is designated as nitC1, controlled the formation of nitrilase that preferred aliphatic nitriles (acrylonitrile and butyronitrile) as best substrates. The nucleotide sequence of the gene nitC1 was almost (99%) identical to the gene sequence of an aliphatic nitrilase from Acidovorax facilis 72W (DQ4444267). In turn, nitC2 had a high level of homology (85%) with the arylacetonitrilase gene from Alcaligenes faecalis JM3 (D13419). Benzyl cyanide was shown to be the best substrate for nitC2-encoded nitrilase. In light of the results of DNA homology and differences in substrate specificity, the NitC2 and NitC1 nitrilases from Alcaligenes denitrificans C-32 were allocated to the groups of aliphatic nitrilases and arylacetonitrilases, respectively.  相似文献   

5.
Wang  Liuzhu  Jiang  Shuiqin  Sun  Yangyang  Yang  Zeyu  Chen  Zhi  Wang  Hualei  Wei  Dongzhi 《Biotechnology letters》2021,43(8):1617-1624
Objectives

Catalytic promiscuity, or the ability to catalyze a secondary reaction, provides new opportunities for industrial biocatalysis by expanding the range of biocatalytic reactions. Some nitrilases converting nitriles to amides, referred to as the secondary activity, show great potential for amides production. And our goal was exploiting the amide-forming potential of nitrilases.

Results

In this study, we characterized and altered the secondary activity of nitrilase from Acidovorax facilis 72 W (Nit72W) towards different substrates. We increased the secondary activity of Nit72W towards 2-cyanopyridine by 196-fold and created activity toward benzonitrile and p-nitrophenylacetonitrile by modifying the active pocket. Surprisingly, the best mutant, W188M, completely converted 250 mM 2-cyanopyridine to more than 98% 2-picolinamide in 12 h with a specific activity of 90 U/mg and showed potential for industrial applications.

Conclusions

Nit72W was modified to increase its secondary activity for the amides production, especially 2-picolinamide.

  相似文献   

6.
《Process Biochemistry》2014,49(3):445-450
A cyanide hydratase from Aspergillus niger K10 was expressed in Escherichia coli and purified. Apart from HCN, it transformed some nitriles, preferentially 2-cyanopyridine and fumaronitrile. Vmax and Km for HCN were ca. 6.8 mmol min−1 mg−1 protein and 109 mM, respectively. Vmax for fumaronitrile and 2-cyanopyridine was two to three orders of magnitude lower than for HCN (ca. 18.8 and 10.3 μmol min−1 mg−1, respectively) but Km was also lower (ca. 14.7 and 3.7 mM, respectively). Both cyanide hydratase and nitrilase activities were abolished in truncated enzyme variants missing 18–34 C-terminal aa residues. The enzyme exhibited the highest activity at 45 °C and pH 8–9; it was unstable at over 35 °C and at below pH 5.5. The operational stability of the whole-cell catalyst was examined in continuous stirred membrane reactors with 70-mL working volume. The catalyst exhibited a half-life of 5.6 h at 28 °C. A reactor loaded with an excess of the catalyst was used to degrade 25 mM KCN. A conversion rate of over 80% was maintained for 3 days.  相似文献   

7.
Nitrilases have long been considered as an attractive alternative to chemical catalyst in carboxylic acids biosynthesis due to their green characteristics and the catalytic potential in nitrile hydrolysis. A novel nitrilase from Pseudomonas putida CGMCC3830 was purified to homogeneity. pI value was estimated to be 5.2 through two-dimensional electrophoresis. The amino acid sequence of NH2 terminus was determined. Nitrilase gene was cloned through CODEHOP PCR, Degenerate PCR and TAIL-PCR. The open reading frame consisted of 1113 bp encoding a protein of 370 amino acids. The predicted amino acid sequence showed the highest identity (61.6%) to nitrilase from Rhodococcus rhodochrous J1. The enzyme was highly specific toward aromatic nitriles such as 3-cyanopyridine, 4-cyanopyridine, and 2-chloro-4-cyanopyridine. It was classified as aromatic nitrilase. The nitrilase activity could reach up to 71.8 U/mg with 3-cyanopyridine as substrate, which was a prominent level among identified cyanopyridine converting enzymes. The kinetic parameters Km and Vmax for 3-cyanopyridine were 27.9 mM and 84.0 U/mg, respectively. These data would warrant it as a novel and potential candidate for creating effective nitrilases in catalytic applications of carboxylic acids synthesis through further protein engineering.  相似文献   

8.
The transformation dynamics of 2- and 4-cyanopyridines by cells suspended and adsorbed on inorganic carriers has been studied in the Rhodococcus ruber gt1 possessing nitrile hydratase activity and the Pseudomonas fluorescens C2 containing nitrilase. It was shown that both nitrile hydratase and nitrilase activities of immobilized cells against 2-cyanopyridine were 1.5–4 times lower compared to 4-cyanopyridine and 1.6–2 times lower than the activities of free cells against 2-cyanpopyridine. The possibility of obtaining isonicotinic acid during the combined conversion of 4-cyanopyridine by a mixed suspension of R. ruber gt1 cells with a high level of nitrile hydratase activity and R. erythropolis 11-2 cells with a pronounced activity of amidase has been shown. Immobilization of Rhodococcus cells on raw coal and Pseudomonas cells on kaolin was shown to yield a heterogeneous biocatalyst for the efficient transformation of cyanopyridines into respective amides and carboxylic acids.  相似文献   

9.
The fungal cyanide hydratases form a functionally specialized subset of the nitrilases which catalyze the hydrolysis of cyanide to formamide with high specificity. These hold great promise for the bioremediation of cyanide wastes. The low resolution (3.0 nm) three-dimensional reconstruction of negatively stained recombinant cyanide hydratase fibers from the saprophytic fungus Neurospora crassa by iterative helical real space reconstruction reveals that enzyme fibers display left-handed D1 S5.4 symmetry with a helical rise of 1.36 nm. This arrangement differs from previously characterized microbial nitrilases which demonstrate a structure built along similar principles but with a reduced helical twist. The cyanide hydratase assembly is stabilized by two dyadic interactions between dimers across the one-start helical groove. Docking of a homology-derived atomic model into the experimentally determined negative stain envelope suggests the location of charged residues which may form salt bridges and stabilize the helix.  相似文献   

10.
The operational stabilities of nitrilases from Aspergillus niger K10 and Fusarium solani O1 were examined with 4-cyanopyridine as the substrate in continuous-stirred membrane reactors (CSMRs). The former enzyme was fairly stable at 30 °C with a deactivation constant (k d) and enzyme half-life of 0.014 h−1 and 50 h, respectively, but the latter exhibited an even higher stability characterized by k d = 0.008 h−1 and half-life of 87 h at 40 °C. Another advantage of this enzyme was its high chemoselectivity, i.e., selective transformation of nitriles into carboxylic acids, while the amide formed a high ratio of A. niger K10 nitrilase product. High conversion rates (>90%) were maintained for about 52 h using the nitrilase from F. solani O1 immobilized in cross-linked enzyme aggregates (CLEAs). The purity of isonicotinic acid was increased from 98% to >99.9% by using two CSMRs connected in series, the first one containing the F. solani O1 nitrilase and the second the amidase from Rhodococcus erythropolis A4 (both enzymes as CLEAs), the amidase hydrolyzing the by-product isonicotinamide.  相似文献   

11.
Heterokaryon incompatibility among Aspergillus niger strains is a widespread phenomenon that is observed as the inability to form stable heterokaryons. The genetic basis of heterokaryon incompatibility reactions is well established in some sexual filamentous fungi but largely unknown in presumed asexual species, such as A. niger. To test whether the genes that determine heterokaryon incompatibility in Neurospora crassa, such as het-c, vib-1 and pin-c, have a similar function in A. niger, we performed a short in silico search for homologues of these genes in the A. niger and several related genomes. For het-c, pin-c and vib-1 we did indeed identify putative orthologues. We then screened a genetically diverse worldwide collection of incompatible black Aspergilli for polymorphisms in the het-c orthologue. No size variation was observed in the variable het-c indel region that determines the specificity in N. crassa. Sequence comparison showed only minor variation in the number of glutamine coding triplets. However, introduction of one of the three N. crassa alleles (het-c2) in A. niger by transformation resulted in an abortive phenotype, reminiscent of the heterokaryon incompatibility in N. crassa. We conclude that although the genes required are present and the het-c homologue could potentially function as a heterokaryon incompatibility gene, het-c has no direct function in heterokaryon incompatibility in A. niger because the necessary allelic variation is absent.  相似文献   

12.
13.
14.
A nitrilase that converts racemic mandelonitrile to R-(—)-mandelic acid was purified to apparent homogeneity from a cell extract of Alcaligenes faecalis ATCC 8750. The molecular weight of this enzyme was estimated to be 32,000±2,000 from SDS-PAGE and that of the native enzyme 460,000±30,000 from HPLC gel filtration. The enzyme preferentially hydrolyzed substituted aliphatic nitriles, in particular benzyl cyanide and its p-substituted compounds, but hydrolyzed aromatic nitriles only with difficulty. The amino-terminal amino acids were sequenced and their sequences compared with those of other nitrilases. The purified enzyme had a pH optimum of 7.5 and an optimum temperature range of 40 to 45°C. The enzyme was inhibited by various thiol reagents. It hydrolyzed racemic mandelonitrile, producing optically pure R-(—)-mandelic acid and ammonia without the concomitant production of mandelamide, evidence that this nitrilase is highly enantioselective for R-mandelonitrile.  相似文献   

15.
The substrate specificity of a novel aldoxime dehydratase from E-pyridine-3-aldoxime assimilating bacterium, Rhodococcus sp. strain YH3-3, was examined. The enzyme catalyzed a dehydration reaction of various aryl- and alkyl-aldoximes to form the corresponding nitriles, but did not act on arylalkyl- and substituted alkyl-aldoximes. Of various aldoximes tested, E-pyridine-3-aldoxime was the most suitable substrate for the enzyme. E-Pyridine-3-aldoxime analogs such as O-acetyl-E-pyridine-3-aldoxime, Z-pyridine-3-aldoxime, and E/Z-pyridine-3-aldehyde-hydrazone also acted as substrates and were converted to 3-cyanopyridine. Heat-treatment of the cells increased the accumulation of 3-cyanopyridine from E-pyridine-3-aldoxime because the nitrile degrading enzyme, nitrile hydratase was inactivated. Under the optimized reaction conditions (pH 7.0, 30°C), various nitriles were synthesized from the corresponding aldoximes in preparative scales with heat-treated cells of the strain. This is the first report on the microbial synthesis of nitriles from aldoximes.  相似文献   

16.
Bulbs mycoflora and their relation with three stored product mites   总被引:1,自引:0,他引:1  
The distribution of moulds on stored and field onion and garlic plants infested by bulb mites in Assiut area (Egypt) was studied using PDA medium at 28 °C. Among 40 host samples and the three mite species tested no significant difference was noted in the contamination by moulds. A total of 20 species appertaining to 11 genera were identified from the tested mites and their habitats. The predominant moulds on all samples were “storage moulds” from the genera Aspergillus (A. niger, A. versicolor)and Penicillium (P. chrysogenum, P. funiculosum,and ``field moulds' among which Alternaria, Cladosporium,Fusarium (and its teleomorphs) and Setosphaeria were encountered most frequently. One fungus well known facultative pathogen was obtained: Beauveria bassiana. The tested mites transferA. niger, N. haematococca, R. stolonifer andP. chrysogenum outside their bodies while, A. flavusand A. ochraceus transfer through their digestive tracts along with the foods. Individuals of all mites could survived till the end of the experiment on all fungal species tested except A. niger, A. ochraceus and A. sydowii.Among 48 isolates screened for their ability to produce chitinase, about 83% of the isolates could produce this enzyme. Most of the positive isolates (17 isolates) had moderate producers This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
A Pseudomonas sp. (S1), isolated from soil by an enrichment technique was tested for its potential to degrade different cyanide compounds. Further, biodegradation/biotransformation of binary mixtures of the cyanide compounds by the culture was also studied. The results indicated that the culture could grow on the following nitriles by using them as carbon and nitrogen sources: acetonitrile, butyronitrile, acrylonitrile, adiponitrile, benzonitrile, glutaronitrile, phenylacetonitrile, and succinonitrile. Studies on the biodegradation of these cyanide compounds in binary mixtures showed that the presence of acrylonitrile or KCN delayed the degradation of acetonitrile in a mixture, while none of the other cyanide compounds affected the degradation of one another. The transformation products of the nitriles were their corresponding acids, and similarly, KCN was also directly transformed to formic acid. Studies on the transformation of these cyanide compounds showed that the rate of transformation of nitriles to their corresponding carboxylic acids was acrylonitrile > acetonitrile > adiponitrile > benzonitrile > KCN. This culture has the unique characteristic of transforming representatives of saturated aliphatic, aliphatic olefinic, aromatic, and aralkyl nitriles, as well as alkali cyanide, to their corresponding carboxylic acids.  相似文献   

18.
The nitrilase from Pseudomonas fluorescens EBC191 converted (R,S)-mandelonitrile with a low enantioselectivity to (R)-mandelic acid and (S)-mandeloamide in a ratio of about 4:1. In contrast, the same substrate was hydrolyzed by the homologous nitrilase from Alcaligenes faecalis ATCC 8750 almost exclusively to (R)-mandelic acid. A chimeric enzyme between both nitrilases was constructed, which represented in total 16 amino acid exchanges in the central part of the nitrilase from P. fluorescens EBC191. The chimeric enzyme clearly resembled the nitrilase from A. faecalis ATCC 8750 in its turnover characteristics for (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile (2-PPN) and demonstrated an even higher enantioselectivity for the formation of (R)-mandelic acid than the nitrilase from A. faecalis. An alanine residue (Ala165) in direct proximity to the catalytically active cysteine residue was replaced in the nitrilase from P. fluorescens by a tryptophan residue (as found in the nitrilase from A. faecalis ATCC 8750 and most other bacterial nitrilases) and several other amino acid residues. Those enzyme variants that possessed a larger substituent in position 165 (tryptophan, phenylalanine, tyrosine, or histidine) converted racemic mandelonitrile and 2-PPN to increased amounts of the R enantiomers of the corresponding acids. The enzyme variant Ala165His showed a significantly increased relative activity for mandelonitrile (compared to 2-PPN), and the opposite was found for the enzyme variants carrying aromatic residues in the relevant position. The mutant forms carrying an aromatic substituent in position 165 generally formed significantly reduced amounts of mandeloamide from mandelonitrile. The important effect of the corresponding amino acid residue on the reaction specificity and enantiospecificity of arylacetonitrilases was confirmed by the construction of a Trp164Ala variant of the nitrilase from A. faecalis ATCC 8750. This point mutation converted the highly R-specific nitrilase into an enzyme that converted (R,S)-mandelonitrile preferentially to (S)-mandeloamide.Nitrilases hydrolyze organic nitriles (R-C☰N) to the corresponding carboxylic acids and ammonia. These enzymes have been isolated from various sources, such as bacteria, fungi, and plants. Commercially, they are a very interesting group of enzymes, because nitriles are important intermediates in the chemical industry and several biotransformations have been described that utilize the chemo-, regio-, or enantioselectivity of nitrilases (2, 6, 16, 20, 22, 29).There is an informal classification that groups nitrilases according to their substrate specificities into “benzonitrilases,” “aliphatic nitrilases,” and “arylacetonitrilases” (17, 23). The arylacetonitrilases convert substrates, such as phenylacetonitrile and α-substituted arylacetonitriles (e.g., 2-phenylpropionitrile [2-PPN], mandelonitrile [2-hydroxyphenylacetonitrile], or phenylglycinonitrile [2-aminophenylacetonitrile]). This group of nitrilases is especially interesting for applications in biotechnology because these enzymes can enantioselectively hydrolyze α-substituted racemic nitriles to optically active carboxylic acids and thus in principle allow the production of the enantiomers of α-amino-, α-hydroxy-, and α-methylcarboxylic acids (1, 3, 10, 34). This trait has been used for the industrial production of (substituted) (R)-mandelic acid(s) from racemic (substituted) mandelonitrile(s) by dynamic kinetic resolution processes using different microorganisms (often strains of Alcaligenes faecalis) (19, 34; M. Ress-Löschke, T. Friedrich, B. Hauer, and R. Mattes, 1998, DE19848129A1, German Patent Office). An enantioselective nitrilase from A. faecalis ATCC 8750 has been purified and characterized, and the encoding gene has been cloned (4, 11, 26, 33).In previous work by our group, a different arylacetonitrilase was obtained from Pseudomonas fluorescens EBC191 (18). This enzyme converted various phenylacetonitriles (e.g., 2-PPN, O-acetoxymandelonitrile, or mandelonitrile), and also aliphatic 2-acetoxynitriles, with moderate enantioselectivities into the corresponding α-substituted carboxylic acids. Furthermore, with some substrates, significant amounts of the corresponding amides were also formed (5, 8, 12, 21, 27).The gene encoding the nitrilase from P. fluorescens EBC191 was recently cloned, and it was found that the nitrilases from P. fluorescens EBC191 and A. faecalis ATCC 8750 are clearly homologous to each other (12). Nevertheless, the two enzymes differ significantly in their catalytic abilities. Thus, the enzyme from A. faecalis ATCC 8750 converts racemic mandelonitrile to (R)-mandelic acid with a high enantioselectivity and forms almost no mandeloamide as a side product. In contrast, the enzyme from P. fluorescens demonstrates only a low degree of enantioselectivity for the formation of (R)-mandelic acid and forms a large amount of mandeloamide (about 16% of the totally converted mandelonitrile). We are therefore currently trying to investigate the molecular basis for these differences in order to improve the substrate specificity and enantiospecificity of nitrilases. In a previous study, we analyzed the effects of various carboxy-terminal mutations on the nitrilase of P. fluorescens EBC191. These experiments showed that deletions of 47 to 67 amino acids from the carboxy terminus of the nitrilase resulted in variant forms that demonstrated, with mandelonitrile and 2-PPN as substrates, increased amide formation and increased formation of the R acids associated with lower specific activities. Although these carboxy-terminal mutants showed increased enantioselectivity for the formation of (R)-mandelic acid, the observed enantioselectivities were still much lower than those observed with the nitrilase from A. faecalis ATCC 8750 and were also associated with increased amide formation (13). Therefore, in the present study, additional mutants were generated in order to analyze the effects of amino acid exchanges close to the catalytic center of the nitrilase.  相似文献   

19.
20.
In this study, nitriles were used as sole sources of nitrogen in the enrichments to isolate nitrile-converting microorganisms. A novel fungus named ZJB-09150 possessing nitrile-converting enzymes was obtained with 3-cyanopyridine as sole source of nitrogen, which was identified by morphology, biology and 18S rDNA gene sequence as Fusarium proliferatum. It was found that F. proliferatum had ability to convert nitriles to corresponding acids or amides and showed wide substrate specificity to aliphatic nitriles, aromatic nitriles and ortho-substituted heterocyclic nitriles. The nitrile converting enzymes including nitrilase and nitrile hydratase in ZJB-09150 were induced by ε-caprolactam. Nitrilase obtained in this study showed high activity toward 3-cyanopyridine. It was active within pH 3.0–12.0 and temperature ranging from 25 to 65 °C with optimal at pH 9.0 and temperature 50–55 °C. The enzyme was thermostable and its half-life was 12.5 and 6 h at 45 and 55 °C, respectively. Under optimized reaction conditions, 60 mM 3-cyanopyridine was converted to nicotinic acid in 15 min, which indicated ZJB-09150 has potentials of application in large scale production of nicotinic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号