首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The chlamydial histone-like proteins, Hc1 and Hc2, function as global regulators of chromatin structure and gene expression. Hc1 and Hc2 expression and activity are developmentally regulated. A small metabolite that disrupts Hc1 interaction with DNA also disrupts Hc2 interactions; however, the small regulatory RNA that inhibits Hc1 translation is specific to Hc1.  相似文献   

2.
3.
4.
5.
6.
7.
During the normal biphasic life cycle of Chlamydia trachomatis, the histone-like protein Hc1 promotes the condensation of nucleoids in elementary bodies, it may also displace nucleoproteins, including repair functions from chromatin. Hc1 was found to effectively inhibit the recombination and repair of the weak binding RecA430 mutant protein from Escherichia coli, but had minimal effects on the parental RecA(+) protein. Expression of Hc1 was also found to inhibit the repair activities of the C. trachomatis RecA protein but not recombination. These results suggest that chlamydial RecA may have evolved mechanisms to minimize Hc1 competition for recombinational activities.  相似文献   

8.
DNA-binding proteins specific to Chlamydia trachomatis elementary bodies have been described and recently characterized as procaryotic histone analogs. I have developed an affinity purification procedure for the 18-kDa histone analog, Hc1, based on its affinity for polyanions. The availability of highly purified Hc1 has allowed for determination of its N-terminal amino acid sequence and should prove useful in studies of its biological function. The variable C. trachomatis histone analog not obtained by this procedure was electrophoresed onto Immobilon paper for sequencing. The N terminus of the variable histone was conserved among C. trachomatis serotypes L2, D, and B and was distinct from that of Hc1.  相似文献   

9.

Background  

The histone-like protein Hc2 binds DNA in Chlamydia trachomatis and is known to vary in size between 165 and 237 amino acids, which is caused by different numbers of lysine-rich pentamers. A more complex structure was seen in this study when sequences from 378 specimens covering the hctB gene, which encodes Hc2, were compared.  相似文献   

10.
11.
Chlamydia trachomatis is one of the few prokaryotic organisms known to contain proteins that bear homology to eukaryotic histone H1. Changes in macromolecular conformation of DNA mediated by the histone H1-like protein (Hc1) appear to regulate stage specific differentiation. We have developed a cross-linking immunoprecipitation protocol to examine in vivo protein-DNA interaction by immune precipitating chlamydial Hc1 cross linked to DNA. Our results strongly support the presence of sequence specific binding sites on the chlamydial plasmid and hc1 gene upstream of its open reading frame. The preferential binding sites were mapped to 520 bp BamHI-XhoI and 547 bp BamHI-DraI DNA fragments on the plasmid and hc1 respectively. Comparison of these two DNA sequences using Bestfit program has identified a 24 bp region with >75% identity that is unique to the chlamydial genome. Double-stranded DNA prepared by annealing complementary oligonucleotides corresponding to the conserved 24 bp region bind Hc1, in contrast to control sequences with similar A+T ratios. Further, Hc1 binds to DNA in a strand specific fashion, with preferential binding for only one strand. The site specific affinity to plasmid DNA was also demonstrated by atomic force microscopy data images. Binding was always followed by coiling, shrinking and aggregation of the affected DNA. Very low protein-DNA ratio was required if incubations were carried out in solution. However, if DNA was partially immobilized on mica substrate individual strands with dark foci were still visible even after the addition of excess Hc1.  相似文献   

12.
An approximately 21?kDa antimicrobial protein was purified from an acidified testis extract of olive flounder, Paralichthys olivaceus, by ion-exchange and C(18) reversed-phase HPLC. A comparison of the N-terminal amino acid sequence with those of other known antimicrobial polypeptides revealed high homology between this antimicrobial protein and other histone H1 molecules; thus, it was designated flounder histone H1-like protein (fH1LP). fH1LP showed potent antimicrobial activity against Gram-positive bacteria, including Bacillus subtilis, Staphylococcus aureus, and Streptococcus iniae (minimal effective concentrations [MECs], 2.8-30.0?μg/ml), Gram-negative bacteria, including Aeromonas hydrophila, Escherichia coli D31, Vibrio parahaemolyticus (MECs, 1.4-12.0?μg/ml), and Candida albicans (MEC, 2.0?μg/ml). cDNA cloning and tissue distribution studies of fH1LP indicated that it is constitutively expressed in testis and ovary. The fH1LP expression level was significantly dependent on developmental stage, and decreased dramatically after hatching. However, lipopolysaccharide stimulation did not induce fH1LP mRNA in other immune organs, including the kidney and spleen. These results suggest that fH1LP plays an important role in innate immunity in fish during reproduction, including mating, fertilization, and hatching.  相似文献   

13.
HU is a most abundant DNA-binding protein in bacteria. This protein is conserved either in its heterodimeric form or in one of its homodimeric forms in all bacteria, in plant chloroplasts, and in some viruses. HU protein non-specifically binds and bends DNA as a hetero- or homodimer and can participate in DNA supercoiling and DNA condensation. It also takes part in some DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows some specificity to cruciform DNA and to repair intermediates, e.g., nick, gap, bulge, 3′-overhang, etc. To understand the features of HU binding to DNA and repair intermediates, a fast and easy HU proteins purification procedure is required. Here we report overproduction and purification of the HU homodimers. The method of HU purification allows obtaining a pure recombinant non-tagged protein cloned in Escherichia coli. We applied this method for purification of Acholeplasma laidlawii HU and demonstrated that this protein possesses a DNA - binding activity and is free of contaminating nuclease activity. Besides that we have shown that expression of A. laidlawii ihf_hu gene in a slow-growing hupAB E. coli strain restores the wild-type growth indicating that aclHU can perform the basic functions of E. coli HU in vivo.  相似文献   

14.
Whole sequence genome analysis is invaluable in providing complete profiles of related proteins and gene families. The genome sequences of the obligate intracellular bacteria Chlamydia trachomatis and Chlamydia pneumoniae both encode proteins with similarity to several 90-kDa Chlamydia psittaci proteins. These proteins are members of a large superfamily, C. trachomatis with 9 members and C. pneumoniae with 21 members. All polymorphic membrane protein (Pmp) are heterogeneous, both in amino acid sequence and in predicted size. Most proteins have apparent signal peptide leader sequences and hence are predicted to be localized to the outer membrane. The unifying features of all proteins are the conserved amino acid motifs GGAI and FXXN repeated in the N-terminal half of each protein. In both genomes, the pmp genes are clustered at various locations on the chromosome. Phylogenetic analysis suggests six related families, each with at least one C. trachomatis and one C. pneumoniae orthologue. One of these families has seen prolific expansion in C. pneumoniae, resulting in 13 protein paralogues. The maintenance of orthologues from each species suggests specific functions for the proteins in chlamydial biology.  相似文献   

15.
Chlamydia trachomatis is a major pathogen throughout the world, and preventive measures have focused on the production of a vaccine using the major outer membrane protein (MOMP). Here, in elementary bodies and in preparations of the outer membrane, we identified native trimers of the MOMP. The trimers were stable under reducing conditions, although disulfide bonds appear to be present between the monomers of a trimer and between trimers. Cross-linking of the outer membrane complex demonstrated that the MOMP is most likely not in a close spatial relationship with the 60- and 12-kDa cysteine-rich proteins. Extraction of the MOMP from Chlamydia isolates under nondenaturing conditions yielded the trimeric conformation of this protein as shown by cross-linking and analysis by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with different concentrations of acrylamide. Using circular dichroism spectroscopy, we determined that the trimers were formed mainly of beta-pleated sheet structures in detergent micelles. Using a liposomal swelling assay, the MOMP was found to have porin activity, and the size of the pore was estimated to be approximately 2 nm in diameter. The trimers were found to be stable in SDS at temperatures ranging from 4 to 37 degrees C and over a pH range of 5.0 to 8.0. In addition, the trimers of MOMP were found to be resistant to digestion with trypsin. In conclusion, these results show that the native conformation of the MOMP of C. trachomatis is a trimer with predominantly a beta-sheet structure and porin function.  相似文献   

16.
17.
A protein kinase with high specificity for histone H1 was purified from a plasmacytoma microsomal fraction by a high-salt wash, ammonium sulfate precipitation, chromatography on DEAE-cellulose, hydroxyapatite and Sephadex G-200 columns, and the main properties of this kinase were studied. A sulfhydryl compound, such as 2-mercaptoethanol or dithiothreitol, was necessary for full activity. The optimum pH was 7.4-7.8. After purification, the histone H1 kinase was not stimulated by cAMP or cGMP. It was not inhibited by the heat-stable cAMP-dependent protein kinase inhibitor from beef heart. It utilized preferentially GTP over ATP as phosphate donor. Km values for ATP and GTP were 58 microM and 1.4 microM respectively; the Km for histone H1 was 14 microgram ml-1. The molecular weight was approximately 90 000 by gel-exclusion chromatography. Analysis of the purified H1-specific protein kinase by polyacrylamide gel electrophoresis in dodecylsulfate showed two bands having molecular weights of approximately 64 000 and 54 000. Many characteristics of this kinase were similar to those of the chromatin-bound protein kinase reported by other workers in rapidly proliferating cells.  相似文献   

18.
Chlamydia trachomatis represents a group of human pathogenic obligate intracellular and gram-negative bacteria. The genome of C. trachomatis D comprises 894 open reading frames (ORFs). In this study the global expression of genes in C. trachomatis A, D and L2, which are responsible for different chlamydial diseases, was investigated using a proteomics approach. Based on silver stained two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), gels with purified elementary bodies (EB) and auto-radiography of gels with 35S-labeled C. trachomatis proteins up to 700 protein spots were detectable within the range of the immobilized pH gradient (IPG) system used. Using mass spectrometry and N-terminal sequencing followed by database searching we identified 250 C. trachomatis proteins from purified EB of which 144 were derived from different genes representing 16% of the ORFs predicted from the C. trachomatis D genome and the 7.5 kb C. trachomatis plasmid. Important findings include identification of proteins from the type III secretion apparatus, enzymes from the central metabolism and confirmation of expression of 25 hypothetical ORFs and five polymorphic membrane proteins. Comparison of serovars generated novel data on genetic variability as indicated by electrophoretic variation and potentially important examples of serovar specific differences in protein abundance. The availability of the complete genome made it feasible to map and to identify proteins of C. trachomatis on a large scale and the integration of our data in a 2-D PAGE database will create a basis for post genomic research, important for the understanding of chlamydial development and pathogenesis.  相似文献   

19.
20.
We have analyzed the structure of the trypsin-resistant core of the protein PL-II* of the sperm from Mytilus californianus. The peptide has a molecular mass of 8436 Da and its primary sequence is ATGGAKKP STLSMIVAAIQAMKNRKGSSVQAIRKYILANNKG INTSRLGSAMKLAFAKGLKSGVLVRPKTSAGA SGATGSFRVG. This sequence bears an enormous homology and fulfills the constraints of the consensus sequence of the trypsin-resistant peptides of the proteins of the histone H1 family. Secondary structure analysis using Fourier-transform infared spectroscopy as well as predictive methods indicate the presence of 20-30% beta-structure and approximately 25% alpha-helix for this peptide. As in the case of histone H1 proteins, the protein PL-II* core exhibits a compact globular structure as deduced from hydrodynamic measurements. The presence of a histone H1 protein with protamine-like features, seems to be thus, a common general feature of the chromatin composition in the sperm of the bivalve molluscs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号