首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Boron Uptake by Excised Barley Roots   总被引:5,自引:0,他引:5  
Active uptake of boron (B) by excised barley roots is linear with time for at least 1.5 h. Although no evidence was found for accumulation of B against a concentration gradient. this component of B uptake does satisfy other criteria for an active transport process. Transport is inhibited by 0.05 mM 2,4-dinitrophenol, 0.05 mM azide, 5 mM arsenate and 5 mM dicoumarol. Also, uptake is temperature-sensitive, being nil at 2°C and maximal at 34 to 38°C. Boron uptake by barley roots increases with time when they are washed in aerated 0.5 mM CaSO4 solution. A double reciprocal plot of the B uptake data manifests a series of phases separated by sharp transitions or “jumps”, and is compatible with the concept of multiphasic uptake mechanisms. Kinetic constants and transition points for the various phases were calculated accordingly. The fit of these data was compared statistically to three other relevant models, viz, the dual model, the “single + diffusion” model (a Michaelis–Menten term and a diffusion term), and the negative cooperativity model. In each case, the data were better represented by the multiphasic model.  相似文献   

2.
Ammonium-fed plants may acidify the rhizosphere and thus increaseavailability of Mn in calcareous alkaline soils. The importanceof N nutrition in the differential expression of tolerance toMn deficiency among cereal genotypes is not yet clear. Two factorialexperiments testing effects of the NH4-N/NO3-N ratio and Mnfertilization on growth of barley genotypes differing in toleranceto Mn deficiency were conducted in two calcareous alkaline soilsin pots in a controlled environment. In the soil containing80% CaCO3at pH 8.5, better root and shoot growth and highershoot Mn concentrations were achieved with nitrate supply, especiallyat lower rates of Mn fertilization. The Mn-efficient genotypeWeeah (tolerant of Mn deficiency) achieved better root and shootgrowth than Mn-inefficient Galleon barley (sensitive to Mn deficiency)regardless of experimental treatment. Fertilization with Mndid not influence total N concentration in barley roots andshoots. In the soil containing 5% CaCO3at pH 7.8, ammonium-fedplants had better root and shoot growth and, at shoot Mn concentrationsabove the critical level, Mn-inefficient Galleon performed betterthan Mn-efficient Weeah barley. It appears that differentialexpression of Mn efficiency among barley genotypes is not associatedwith differences in Mn availability expected to be producedby differential rhizosphere acidification as a response to differentforms of N supply. There is an apparent preference of locallyselected barley genotypes for nitrate nutrition when grown onthe highly calcareous alkaline soils of southern Australia. Ammonium; calcareous soil; Hordeum vulgare ; manganese; nitrate; nitrogen form; nutrient efficiency; rhizosphere  相似文献   

3.

In this study, the effects of boron stress and the application of silicon were investigated on the expression levels of barley homologues of three transporter genes, namely BOR2, PIP1, and PIP1;1, which have potential in transferring boron and silicon into or out of tissues. Boron toxicity in shoot tissues was observed as early as 1-day-long exposure by means of several stress indicators including ion leakage, malondialdehyde (MDA) and H2O2 levels. Elemental analysis showed that presence of Si under B stress reduces tissue B levels, whereas B presence increased Si levels in tissues. Presence of silicon induced BOR2 gene expression in shoots during early stress. Presence of both elements simultaneously increased BOR2 expression in both shoot and root tissues, which might be attributed to element similarity. Expression levels of both aquaporin genes PIP1 and PIP1;1 increased in shoots under short term B and Si applications, and levels were more responsive to B when compared to Si. Similar to BOR2 expression, silicon increased both aquaporin gene expressions in shoot tissues under short term boron stress. Investigation of the response of BOR2 and aquaporin genes under boron stress and in the presence of silicon revealed their sensitivity to silicon and their potential function in transporting silicon into tissues. Based on the present work, stress mitigating effects of silicon can be attributed to the competitive role of silicon for the transport via boron transporters under toxic boron levels.

  相似文献   

4.
Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small.Boron (B) toxicity affects a wide variety of plants growing on soils with naturally high levels of B or when irrigated with water containing elevated levels of B (Stangoulis and Reid, 2002). Symptoms are most commonly seen as necrosis on leaf margins or leaf tips, depending on the type of leaf venation (Oertli and Kohl, 1961). Plant tolerance to high B varies considerably but is most commonly associated with reduced accumulation of B (Nable et al., 1997). Hayes and Reid (2004) identified differences in B efflux in roots as the primary determinant of the net uptake of B in barley (Hordeum vulgare). Reid (2007) established that this was also the mechanism for differences in B uptake in wheat (Triticum aestivum) and showed that there was a strong correlation between tolerance in both wheat and barley with the expression in roots of the genes TaBOR2 and HvBOR2, which encode B efflux transporters with homology to B efflux transporters in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa; Takano et al., 2002; Nakagawa et al., 2007). Since the concentration of B in shoots was closely related to the concentration of B in roots (Hayes and Reid, 2004; Reid, 2007) a simple mechanism of tolerance could be explained. A similar mechanism of tolerance was shown to occur in Arabidopsis when roots overexpressed AtBor4 (Miwa et al., 2007).Sutton et al. (2007) made a qualitative analysis of the expression in leaves of Bot1 (which is identical to HvBOR2 and to avoid confusion will henceforth be referred to as HvBOR2) and found strong expression associated with hydathodes in the leaf tip. They proposed that in addition to root-based tolerance conferred by pumping of B from roots, that further tolerance could be achieved by excretion of B from hydathodes and its subsequent removal by rain. Oertli (1962) demonstrated that in young barley seedlings, significant amounts of B could be lost from leaves in this way.In the early work on B tolerance in cereals, it was noted that toxicity for plants grown in the field was generally observed at much lower concentrations of B in leaves than for plants grown in the glasshouse. For example, Nable et al. (1990) found that a 17% reduction in yield of field-grown barley occurred with a shoot B concentration of 62 mg kg−1 dry weight (DW) whereas in the glasshouse the corresponding concentration was 120 mg kg−1 DW. It was concluded that the most likely cause of the difference in shoot B between the growth conditions was leaching of B from leaves by rain in the field. However, an experiment in which a comparison was made between plants on which the leaves were regularly sprayed with water or not sprayed failed to show any difference in growth, despite significant reductions in leaf B in the sprayed plants (Nable et al., 1990).Jefferies et al. (1999) identified chromosome regions associated with tolerance in barley. They found a major locus on chromosome 4 that was related to reduced B uptake and a decrease in leaf symptoms. This locus was subsequently found to contain HvBOR2 (Sutton et al., 2007), whose expression in roots could explain both reduced B uptake and the decrease in leaf symptoms. In addition to the locus on chromosome 4, there was another locus on chromosome 2 that was associated with leaf symptom score but not associated with whole shoot B concentration (Jefferies et al., 1999).In this study we have shown that the expression of B efflux transporter genes in leaves results in enhanced tolerance to B, and contrary to previous reports, that rain can significantly reduce B toxicity.  相似文献   

5.
Transpiration in Barley Lines with Differing Stomatal Frequencies   总被引:3,自引:0,他引:3  
Leaf conductances and transpiration rates from potted plantswere studied on two pairs of barley lines selected for highor low stomatal frequency on the flag leaf. Although there werelarge differences in stomatal frequency on the flag leaves,there was no evidence that the low frequency lines had the lowerconductances at equal leaf water potentials. This may have beendue to the changes in the size of the stomata which compensatedfor differences in stomatal frequency. Although there were no differences in stomatal conductance (expressedon a unit leaf area basis) the rate of water use per plant wasup to 50% faster for the low frcquency lines than for the high,particularly after emergence of the sixth leaf. This was causedby a larger green leaf area at this stage which was in turndue to larger individual leaves, more tillers, and a slowersenescence of the older leaves. These observations are discussed in relation to the possibilityof selecting for stomatal characteristics as a means of breedingvarieties able to tolerate drought.  相似文献   

6.
Spring barley cultivars currently grown in Germany are all more or less susceptible to Rhynchosporium secalis (Oudem.) J.J. Davis, but there are obvious differences in the degree of susceptibility under field conditions. Small genotypic differences may be caused by both genetic and environmental effects, respectively. To minimize the influence of environmental variation on disease expression, several inoculation methods were developed in the present study. In two experiments the effectiveness of the inoculation by spraying of single spore isolates was tested in the glasshouse and in the field, respectively. High infection levels were achieved in the glasshouse. Despite the infection of barley in the field, disease expression levels remained low due to unfavourable conditions. Another experiment showed the usefulness of infected straw applied in the autumn only for testing the seedling infection type of spring barley cultivars against R, secalis. Seedling assay scores and field infection levels were closely related (r = 0.796, P < 0.01; r = 0.911, P < 0.001). Therefore, both the spray infection technique in the glasshouse and the inoculation technique using infected straw in the field appear to be suitable to detect genetic differences in resistance/susceptibility of spring barley cultivars against leaf blotch.  相似文献   

7.
Anaerobic Phosphate Uptake by Barley Plants   总被引:1,自引:0,他引:1  
Considerable uptake of phosphate by both the shoot and roothas been demonstrated for young barley plants with their rootsin anoxic culture solution at concentrations of 1 to 10 µMorthophosphate. Consideration of the free space and passivetranspirational uptake indicates an accumulatory process, andthe immediate efflux caused by respiratory inhibitors supportsthis. Shoot uptake is much less at higher external concentrationsof phosphate and at o.I mM was only 14 per cent of the control.The root accumulation process was unimpaired at an externalconcentration of 1 µM phosphate when the whole plant wassubjected to anaerobic conditions (shoot illuminated) but undersimilar conditions at a concentration of 100 µM a considerableefflux of phosphate occurred. Analysis of the fate of phosphatetaken up from anoxic solution of phosphate (10 µM) indicatedthat there was a reduction in the level of inorganic phosphateafter 4.5 h and steady rise in sugar phosphates up to 6 h witha marked increase in the levels of glucose-6-phosphate, fructose-6-phosphate,and the phosphoglycerate fraction.  相似文献   

8.
Multiphasic Uptake of Sulfate by Barley Roots   总被引:2,自引:0,他引:2  
Uptake of sulfate by excised barley roots increases upon their washing in aerated water or dilute CaCl2 solutions. Washing increases the values for Vmax and the sulfate concentrations required for transition between the lower phases, but the KM-values remain essentially constant. At low sulfate concentrations, phase transitions do not occur in the absence of calcium or other divalent cations. These ions are about equally effective in enhancing short-term sulfate uptake. Phase transitions were not principally altered by sulfhydryl or protein reagents. These concentration-dependent transitions appear unrelated to temperature-dependent phase transitions as evidenced by similar multiphasic patterns at low and high temperature.  相似文献   

9.
Active Silicon Uptake by Wheat   总被引:2,自引:1,他引:1  
The absorption of Si by wheat, Triticum aestivum L. ‘Yecora Rojo,’ followed Michaelis–Menten kinetics over a concentration range of 0.004–1.0 mM. Km and Vmax were determined using linear transformations and the calculated curve fitted the data closely. The absorption resulted in accumulation ratios of 200/1 or more. In keeping with that finding, this study also demonstrated that Si uptake by wheat is under metabolic control, being severely restricted by dinitrophenol (DNP) and potassium cyanide (KCN). Silicon uptake by wheat was not significantly affected by phosphate ions, but the chemical analog Ge exerted a direct competitive effect on Si uptake, and vice versa.  相似文献   

10.
11.
Characteristics of Zinc Uptake by Barley Roots   总被引:4,自引:0,他引:4  
The linear uptake of zinc by excised barley roots (Hordeum distichon L.) in the time range from 20–120 min is not continued over periods of 20–28 h. In concentration dependent uptake experiments with intact barley roots three phases in the range up to 1.38 mM zinc could be detected independent of the tested uptake period. The kinetic constants increased with higher phases and the transition points were lowered with increasing time. The presence of copper did not inhibit the uptake of zinc competitively. On the contrary a slight stimulation in the uptake rates was observed indicating an interaction with the transition site. It is concluded that zinc and copper are taken up by separate mechanisms.  相似文献   

12.
选用耐旱性不同的3个大麦(Hordeum sativum)品种作为研究对象,分析干旱胁迫对其叶肉细胞叶绿体、线粒体和细胞核超微结构的影响。结果表明,3个大麦品种在非胁迫条件下其超微结构无明显差异。遭受干旱胁迫后,不耐旱大麦品种Moroc9-75叶片细胞核中染色质的凝聚程度高,叶绿体变形,外被膜出现较大程度的波浪状和膨胀,同时基粒出现弯曲、膨胀、排列混乱的现象;线粒体外形及膜受到破坏、内部嵴部分消失等。耐旱大麦品种HS41-1叶片细胞中染色质虽出现凝聚,但凝聚程度低;其叶绿体及线粒体与非胁迫条件下基本相似,多数未见明显损伤。耐旱中等的大麦品种Martin叶片超微结构的变化则介于二者之间。因此,干旱胁迫下叶绿体外形、基粒和基质类囊体膜结构的完整性与基粒的排列次序、染色质的凝聚度和线粒体膜及嵴的完整性与大麦的耐旱性相关,这些特性可作为评价大麦耐旱性强弱的形态结构指标。  相似文献   

13.
干旱胁迫对不同耐旱性大麦品种叶片超微结构的影响   总被引:2,自引:0,他引:2  
选用耐旱性不同的3个大麦(Hordeum sativum)品种作为研究对象, 分析干旱胁迫对其叶肉细胞叶绿体、线粒体和细胞核超微结构的影响。结果表明, 3个大麦品种在非胁迫条件下其超微结构无明显差异。遭受干旱胁迫后, 不耐旱大麦品种Moroc9-75叶片细胞核中染色质的凝聚程度高, 叶绿体变形, 外被膜出现较大程度的波浪状和膨胀, 同时基粒出现弯曲、膨胀、排列混乱的现象; 线粒体外形及膜受到破坏、内部嵴部分消失等。耐旱大麦品种HS41-1叶片细胞中染色质虽出现凝聚, 但凝聚程度低; 其叶绿体及线粒体与非胁迫条件下基本相似, 多数未见明显损伤。耐旱中等的大麦品种Martin叶片超微结构的变化则介于二者之间。因此, 干旱胁迫下叶绿体外形、基粒和基质类囊体膜结构的完整性与基粒的排列次序、染色质的凝聚度和线粒体膜及嵴的完整性与大麦的耐旱性相关, 这些特性可作为评价大麦耐旱性强弱的形态结构指标。  相似文献   

14.
15.
Multiphasic Uptake of Amino Acids by Barley Roots   总被引:10,自引:0,他引:10  
Concentration-dependence and other characteristics of uptake of 3H-labeled l -lysine, l -methionine and l -proline by excised roots of barley (Hordeum vulgare L.) were studied. Use of relatively short uptake and wash periods and low solute concentrations ensured good estimates of influx across the plasmalemma. Uptake in the range of 10?7M– 6.3 × 10?3M can be precisely represented by four or five phases of single, multiphasic mechanisms. The mechanisms appear to be relatively specific as judged from the competition by unlabeled analogues. Structural requirements for interaction of a compound with the uptake site for methionine are given, as are the effects of analogues on the phase pattern for this amino acid. There is no indication of separate uptake and transition sites for methionine or lysine. i.e. phase transitions seem in this case to be caused by binding of molecule(s) to the uptake site. Uptake, but not phase patterns, was highly pH-dependent. The optima were pH 5 for lysine, pH 3–5 (a broad peak) for methionine and about pH 5.5 for proline. Uptake of the three amino acids was strongly inhibited by 2,4-dinitrophenol. sulfhydryl reagents and deoxycholate.  相似文献   

16.
Greenhouse hydroponic experiments were conducted using Cd-sensitive (Dong 17) and tolerant (Weisuobuzhi) barley genotypes to evaluate genotypic differences in response of photosynthesis and ultrastructure to Cd toxicity in the presence of exogenous glutathione (GSH). Addition of 20 mg L(-1) GSH in 5 μM Cd culture medium (Cd?+?GSH) significantly alleviated Cd-induced growth inhibition and reduced Cd concentration in leaves and roots especially in the sensitive genotype Dong 17. Exogenous GSH greatly ameliorated Cd-induced damages on leaf/root ultrastructure, e.g., compared with Cd alone treatment, chloroplasts in plants treated with Cd?+?GSH become better or in relatively normal shape with well-structured thylakoid membranes and parallel pattern of lamellae and unfolded more starch grains but less osmiophilic plastoglobuli; nuclei of root cells were better formed and chromatin distributed more uniformly in both genotypes, and number of plastids and mitochondria cristae in Dong 17 resumed to control level. The examination of photosynthetic performance revealed GSH dramatically increased net photosynthetic rate (P(n)), stomatal conductance (G(s)), and transpiration rate (T(r)) in the both genotypes and strongly stimulated Cd-induced decrease in the maximal photochemical efficiency (F(v)/F(m)) especially in the sensitive genotype.  相似文献   

17.
为了解不同来源大麦对条纹病的抗性及遗传多样性,本研究采用"三明治法"通过人工接种大麦条纹病菌对91份大麦材料进行抗性评价,并通过31对SSR标记对91份大麦材料进行遗传多样性和群体结构分析。结果表明,人工接种大麦条纹病菌后共鉴定出4份免疫、6份高抗、33份抗病、43份感病和5份高感大麦材料;31对SSR标记共检测出等位基因238个,平均每对标记可检测到7.677个等位基因,等位基因数的变幅为2~19;主基因频率变化范围为0.236~0.951,平均值为0.394;基因多样性指数的变幅为0.094~0.871,平均值为0.667;多态性信息含量变幅为0.091~0.860,平均值为0.613;遗传相似系数变异范围为0.103~1.000,平均值为0.522;在遗传相似系数为0.783水平上可将参试材料聚为3个大类群,各大类分别包含86份、2份和3份材料;群体遗传结构分析表明,供试大麦材料分为3个亚群,每个亚群分别包含47份、33份和11份材料,且在91份材料中,Q>0.6的材料占总数的97.80%。本研究经抗病鉴定及分子标记结果综合分析,可为挑选抗病亲本辅助抗大麦条纹病优良品种的选...  相似文献   

18.
Accumulation of sodium and rubidium by excised barley roots was investigated. The concentration isotherm yielded one absorption shoulder. Nevertheless, it is suggested that two mechanisms take part in the uptake of sodium and rubidium: One non-metabolic mechanism with an apparent participation at low external salt concentrations (< 1 mM) and at high concentrations (> 20 mM). Such a mechanism is almost unaffected by low temperature conditions and by metabolic inhibitors. Rubidium possesses a high affinity toward this non-metabolic system. The second mechanism is sensitive to metabolic inhibitors and to low temperature conditions. It dominates at intermediate external concentrations (1–20 mM). Sodium possesses high affinity towards this mechanism. The two mechanisms operate in a parallel manner beyond a diffusion barrier (= plasmamembrane) surrounding the cells. It is assumed that both the metabolic and the non-metabolic mechanisms operate in the entire concentration spectrum, but their relative contribution to the total uptake varies at different ranges.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号