首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of the fusion process between erythrocyte ghosts, as induced by Sendal virus, were readily revealed by a simple fluorescence procedure previously employed to characterize the fusion of viruses with biological membranes. The method relies on the relief of fluorescence selfquenching of the membrane-inserted probe octadecyl Rhodamine B chloride (R18) as occurs when labeled membranes fuse with unlabeled counterparts. The kinetics of R18 insertion into ghost membranes, the non-exchangeable properties of the fluorophore and the kinetics, and some characteristics of Sendai virus-induced fusion of ghosts, are described. We propose that the experimental approach may be particularly advantageous to obtain insight into the efficiency and mechanism of a wide range of fusogens, capable of inducing fusion of erythrocyte membranes.  相似文献   

2.
Sendai virus particles are able to fuse with Pronase-neuraminidase-treated human erythrocyte membranes as well as with vesicles obtained from chromaffin granules of bovine medulla. Fusion is inferred either from electron microscopic studies or from the observation that incubation of fluorescently labeled (bearing octadecyl Rhodamine B chloride) virions, with right-side-out erythrocyte vesicles (ROV) or with chromaffin granule membrane vesicles (CGMV), resulted in fluorescence dequenching. Fusion of Sendai virions with virus receptor depleted ROV was observed only under hypotonic conditions. Fusion with virus receptor depleted ROV required the presence of the two viral envelope glycoproteins, namely, the HN and F polypeptides. A 3-fold increase in the degree of fluorescence dequenching (virus-membrane fusion) was also obtained upon incubation of Sendai virions with CGMV in medium of low osmotic strength. This increase was not observed with inactivated, unfusogenic Sendai virions. The results of the present work demonstrate that, under hypotonic conditions, fusion between Sendai virions and biological membranes does not require the presence of specific receptors. Such fusion is characterized by the same features as fusion with and infection by Sendai virions of living cultured cells.  相似文献   

3.
K Klappe  J Wilschut  S Nir  D Hoekstra 《Biochemistry》1986,25(25):8252-8260
A kinetic and quantitative characterization of the fusion process between Sendai virus and phospholipid vesicles is presented. Membrane fusion was monitored in a direct and continuous manner by employing an assay which relies on the relief of fluorescence self-quenching of the probe octadecylrhodamine B chloride which was located in the viral membrane. Viral fusion activity was strongly dependent on the vesicle lipid composition and was most efficient with vesicles solely consisting of acidic phospholipids, particularly cardiolipin (CL). This result implies that the fusion of viruses with liposomes does not display an absolute requirement for specific membrane receptors. Incorporation of phosphatidylcholine (PC), rather than phosphatidylethanolamine (PE), into CL bilayers strongly inhibited fusion, suggesting that repulsive hydration forces interfere with the close approach of viral and target membrane. Virus-liposome fusion products were capable of fusing with liposomes, but not with virus. In contrast to fusion with erythrocyte membranes, fusion between virus and acidic phospholipid vesicles was triggered immediately, did not strictly depend on viral protein conformation, and did not display a pH optimum around pH 7.5. On the other hand, with vesicles consisting of PC, PE, cholesterol, and the ganglioside GD1a, the virus resembled more closely the fusogenic properties that were seen with erythrocyte target membranes. Upon decreasing the pH below 5.0, the viral fusion activity increased dramatically. With acidic phospholipid vesicles, maximal activity was observed around pH 4.0, while with GD1a-containing zwitterionic vesicles the fusion activity continued to increase with decreasing pH down to values as low as 3.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Fusion between membranes of Sendai virus and liposomes or human erythrocytes ghosts was studied using an assay for lipid mixing based on the relief of self-quenching of octadecylrhodamine (R18) fluorescence. We considered only viral fusion that reflects the biological activity of the viral spike glycoproteins. The liposomes were made of phosphatidylcholine, and the effects of including cholesterol, the sialoglycolipid GD1a, and/or the sialoglycoprotein glycophorin as receptors were tested. Binding of Sendai virus to those liposomes at 37 ?C was very weak. Fusion with the erythrocyte membranes occurred at a 30-fold faster rate than with the liposomes. Experiments with biological and liposomal targets of different size indicated that size did not account for differences in fusion efficiency.  相似文献   

5.
The role of the target membrane structure in fusion with Sendai virus   总被引:3,自引:0,他引:3  
Fusion between membranes of Sendai virus and liposomes or human erythrocytes ghosts was studied using an assay for lipid mixing based on the relief of self-quenching of octadecylrhodamine (R18) fluorescence. We considered only viral fusion that reflects the biological activity of the viral spike glycoproteins. The liposomes were made of phosphatidylcholine, and the effects of including cholesterol, the sialoglycolipid GD1a, and/or the sialoglycoprotein glycophorin as receptors were tested. Binding of Sendai virus to those liposomes at 37 degrees C was very weak. Fusion with the erythrocyte membranes occurred at a 30-fold faster rate than with the liposomes. Experiments with biological and liposomal targets of different size indicated that size did not account for differences in fusion efficiency.  相似文献   

6.
The fusion of Sendai virus at pH 4-7 with artificial lipid vesicles composed of phosphatidylserine or phosphatidylcholine was quantified by measuring fluorescence energy transfer from N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-phosphatidylethanolamine to N-(lissamine-rhodamine-B-sulfonyl)-phosphatidylethanolamine in the target membranes. About 60% of the phosphatidylserine vesicles and virus appeared to fuse at pH 4 and about 100% at pH 5. Fusion was much less under all other conditions. The apparent fusion at pH 4, however, was due to a decrease in absorption of the acceptor probe, instead of dilution of acceptor as a result of fusion of labeled vesicles with unlabeled virus. After correction for this fusion-independent effect of Sendai virus, the extent of fusion was only 4-20% at pH 4 but still 80-100% at pH 5. These findings paralleled the loss of hemagglutinating and hemolytic activities of the virus induced by incubation at pH 4 but not at pH 5. Vesicle-virus hybrids were observed with the electron microscope after incubation at pH 5 but not at pH 7. The assay of membrane fusion by fluorescence energy transfer can be misleading unless correction is made for changes in energy transfer due to fusion-independent effects.  相似文献   

7.
S Nir  K Klappe  D Hoekstra 《Biochemistry》1986,25(8):2155-2161
The kinetics and extent of fusion between Sendai virus and erythrocyte ghosts were investigated with an assay for lipid mixing based on the relief of self-quenching of fluorescence. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of virus-cell adhesion followed by the first-order fusion reaction itself. The fluorescence development during the course of the fusion process was calculated by numerical integration, employing separate rate constants for the adhesion step and for the subsequent fusion reaction. Dissociation of virus particles from the cells was found to be of minor importance when fusion was initiated by mixing the particles at 37 degrees C. However, besides the initiation of fusion, extensive dissociation does occur after a preincubation of a concentrated suspension of particles at 4 degrees C followed by a transfer of the sample to 37 degrees C. The conclusion drawn from the levels of fluorescence increase obtained after 20 h of incubation is that in principle most virus particles can fuse with the ghosts at 37 degrees C and pH 7.4. However, the number of Sendai virus particles that actually fuse with a single ghost is limited to 100-200, despite the fact more than 1000 particles can bind to one cell. This finding may imply that 100-200 specific fusion sites for Sendai virus exist on the erythrocyte membrane. A simple equation can yield predictions for the final levels of fluorescence for a wide range of ratios of virus particles to ghosts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Entry of an enveloped virus such as Epstein-Barr virus (EBV) into host cells involves fusion of the virion envelope with host cell membranes either at the surface of the cell or within endocytic vesicles. Previous work has indirectly implicated the EBV glycoprotein gp85 in this fusion process. A neutralizing monoclonal antibody to gp85, F-2-1, failed to inhibit binding of EBV to its receptor but interfered with virus fusion as measured with the self-quenching fluorophore octadecyl rhodamine B chloride (R18) (N. Miller and L. M. Hutt-Fletcher, J. Virol. 62:2366-2372, 1988). To test further the hypothesis that gp85 functions as a fusion protein, EBV virion proteins including or depleted of gp85 were incorporated into lipid vesicles to form virosomes. Virosomes were labeled with R18, and those that were made with undepleted protein were shown to behave in a manner similar to that of R18-labeled virus. They bound to receptor-positive but not to receptor-negative cells and fused with Raji cells but not with receptor-positive, fusion-incompetent Molt 4 cells; monoclonal antibodies that inhibited binding or fusion of virus inhibited binding and fusion of virosomes, and virus competed with virosomes for attachment to cells. In contrast, virosomes made from virus proteins depleted of gp85 by immunoaffinity chromatography remained capable of binding to receptor-positive cells but failed to fuse. These results are compatible with the hypothesis that gp85 is actively involved in the fusion of EBV with lymphoblatoid cell lines and suggest that the ability of antibody F-2-1 to neutralize infectivity of EBV represents a direct effect on the function of gp85 as a fusion protein.  相似文献   

9.
Small hydrophobic peptides that are capable of inhibiting Sendai virus infection of cells (Richardson, C. D., Scheid, A., and Choppin, P. W. (1980) Virology 105, 205-222) are also capable of inhibiting membrane fusion in a pure lipid vesicle system. Large unilamellar vesicles of N-methyl dioleoylphosphatidylethanolamine containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid and/or p-xylene bis (pyridinium bromide) were formed by extrusion. Vesicle fusion (contents mixing) and leakage were then monitored with the 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylene bis(pyridinium bromide) fluorescence assay. Sendai virus fusion with lipid vesicles was measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride, a lipid mixing assay for fusion. The efficiency with which the peptides carbobenzoxy-D-Phe-L-PheGly, carbobenzoxy-L-Phe-L-Tyr, and carbobenz-oxy-Gly-L-Phe inhibit fusion of N-methyl dioleoyl-phosphatidylethanolamine large unilamellar vesicles directly paralleled their previously known effectiveness in blocking virus infectivity of cultured cells. In addition, above a certain concentration threshold, the inhibitory peptides decreased the initial rate of leakage from lipid vesicles. The inhibition by these peptides of virus-vesicle fusion followed the same order of potency as for vesicle-vesicle fusion. The observation of the same relative potency of these peptides toward inhibition of virus-cell infection, and virus-vesicle and vesicle-vesicle membrane fusion suggested that these peptides inhibited virus-cell infection by inhibiting the ability of the virus to fuse with the cell. Furthermore, these results suggest that the mechanism of inhibition of all three fusion events may have steps in common.  相似文献   

10.
The fluorescent probes, N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine and lissamine-rhodamine-B-sulfonylphosphatidylethanolamine, were inserted at the appropriate surface density into membranes of reconstituted Sendai virus envelopes, thus allowing transfer of energy between the fluorescent probes. In addition, only the fluorescent molecule N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine was inserted into the viral envelopes, resulting in self-quenching. Incubation of fluorescent, reconstituted Sendai virus envelopes with human erythrocyte ghosts resulted in either reduction in the efficiency of energy transfer or in fluorescence dequenching. No reduction in the efficiency of energy transfer or fluorescence dequenching was observed when fluorescent, reconstituted Sendai virus envelopes were incubated with glutaraldehyde-fixed or desialized human erythrocyte ghosts. Similarly, no change in the fluorescence value was observed when nonfusogenic, reconstituted Sendai virus envelopes were incubated with human erythrocyte ghosts. These results clearly show that reduction in the efficiency of energy transfer or dequenching is due to virus-membrane fusion and not to lipid-lipid exchange. Incubation of reconstituted Sendai virus envelopes, carrying inserted N-4-nitrobenzo-2-oxa-1,3-diazolephosphatidylethanolamine, with cultured cells also resulted in a significant and measurable dequenching. However, incubation of nonfusogenic, fluorescent reconstituted Sendai virus envelopes with hepatoma tissue culture cells also resulted in fluorescent dequenching, the degree of which was about 50% of that observed with fusogenic, fluorescent reconstituted viral envelopes. It is therefore possible that, in addition to virus-membrane fusion, endocytosis of fluorescent viral envelopes results in fluorescence dequenching as well.  相似文献   

11.
We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already bound to the erythrocyte/erythrocyte ghost in the cold, since with virus prebinding fusion can be triggered more rapidly. Although virus binding to both erythrocytes and erythrocyte ghosts was similar, fusion activity was much more pronounced when erythrocyte ghosts were used as target membranes. These observations indicate that intact erythrocytes and erythrocyte ghosts are not equivalent as target membranes for the study of Sendai virus fusion activity. Fusion of Sendai virus with both target membranes was inhibited when erythrocytes or erythrocyte ghosts were pretreated with proteinase K, suggesting a role of target membrane proteins in this process. Treatment of both target membranes with neuraminidase, which removes sialic acid residues (the biological receptors for Sendai virus) greatly reduced viral binding. Interestingly, this treatment had no significant effect on the fusion reaction itself.  相似文献   

12.
A novel fluorescence assay [Hoekstra, D., De Boer, T., Klappe, K., & Wilschut, J. (1984) Biochemistry 23, 5675-5681] has been used to characterize the fusogenic properties of Sendai virus, using erythrocyte ghosts and liposomes as target membranes. This assay involves the incorporation of the "fusion-reporting" probe in the viral membrane, allowing continuous monitoring of the fusion process in a very sensitive manner. Fusion was inhibited upon pretreatment of Sendai virus with trypsin. Low concentrations of the reducing agent dithiothreitol (1 mM) almost completely abolished viral fusion activity, whereas virus binding was reduced by ca. 50%, indicating that the fusogenic properties of Sendai virus are strongly dependent on the integrity of intramolecular disulfide bonds in the fusion (F) protein. Pretreatment of erythrocyte ghosts with nonlabeled Sendai virus inhibited subsequent fusion of fluorophore-labeled virus irrespective of the removal of nonbound virus, thus suggesting that the initial binding of the virus to the target membrane is largely irreversible. As a function of pH, Sendai virus displayed optimal fusion activity around pH 7.5-8.0. Preincubation of the virus at suboptimal pH values resulted in an irreversible diminishment of its fusion capacity. Since virus binding was not affected by the pH, the results are consistent with a pH-induced irreversible conformational change in the molecular structure of the F protein, occurring under mild acidic and alkaline conditions. In contrast to virus binding, fusion appeared to be strongly dependent on temperature, increasing ca. 25-fold when the temperature was raised from 23 to 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
J M Gilbert  D Mason    J M White 《Journal of virology》1990,64(10):5106-5113
We investigated whether Rous sarcoma virus (RSV) infects cells through a pH-independent or a low-pH-dependent pathway. To do this, the effects of lysosomotropic agents and acid pretreatment on RSV infectivity of, and fusion with, chicken embryo fibroblasts (CEFs) were studied. High concentrations of lysosomotropic agents (ammonium chloride and monensin) did not inhibit virus infectivity: equal titers of RSV were produced in the presence and absence of these agents. Similarly, low-pH pretreatment did not inhibit RSV infectivity. In parallel experiments, lysosomotropic agents and acid pretreatment completely abolished the ability of influenza virus to infect CEFs. To monitor the fusion activity of RSV directly, the viral membrane was labeled with the fluorescent lipid probe octadecyl rhodamine at a self-quenching concentration. Upon fusion with a host cell, the probe is diluted in the cell membrane, resulting in fluorescence dequenching (D. Hoekstra, T. de Boer, K. Klappe, and J. Wilschut, Biochemistry 23:5675-5681, 1984). In this assay, fusion of RSV with CEFs was found to occur in both a time-dependent and a strictly temperature-dependent fashion. No fusion occurred unless cells with prebound virus were warmed to temperatures greater than 20 degrees C. Fusion, but not binding, was abolished if virus was pretreated with low concentrations of glutaraldehyde. High concentrations of ammonium chloride had no effect on fusion of RSV with CEFs but greatly diminished the ability of influenza virus and Semliki Forest virus to fuse with CEFs. Similarly, acid pretreatment of RSV had no effect on fusion with CEFs while markedly inhibiting fusion of both influenza and Semliki Forest viruses. Collectively, our results show that RSV fusion with and hence infection of CEFs does not require exposure of the virus to low pH. In this respect, RSV resembles another retrovirus, human immunodeficiency virus.  相似文献   

14.
The role of osmotic forces and cell swelling in the influenza virus-induced fusion of unsealed or resealed ghosts of human erythrocytes was investigated under isotonic and hypotonic conditions using a recently developed fluorescence assay (Hoekstra, D., De Boer, T., Klappe, K., Wilschut, J. (1984) Biochemistry 23, 5675-5681). The method is based on the relief of fluorescence selfquenching of the fluorescent amphiphile octadecyl rhodamine B chloride (R18) incorporated into the ghost membrane as occurs when labeled membranes fuse with unlabeled membranes. No effect neither of the external osmotic pressure nor of cell swelling on virally mediated ghost fusion was established. Influenza virus fused unsealed ghosts as effectively as resealed ghosts. It is concluded that neither osmotic forces nor osmotic swelling of cells is necessary for virus-induced cell fusion. This is supported by microscopic observations of virus-induced fusion of intact erythrocytes in hypotonic and hypertonic media. A disruption of the spectrin-actin network did not cause an enhanced cell fusion at acidic pH of about 5 or any fusion at pH 7.4.  相似文献   

15.
V S Malinin  M E Haque  B R Lentz 《Biochemistry》2001,40(28):8292-8299
A number of fluorescent probes have been used to follow membrane fusion events, particularly intermixing of lipids. None of them is ideal. The most popular pair of probes is NBD-PE and Rh-PE, in which the fluorescent groups are attached to the lipid headgroups, making them sensitive to changes in the surrounding medium. Here we present a new assay for monitoring lipid transfer during membrane fusion using the acyl chain tagged fluorescent probes BODIPY500-PC and BODIPY530-PE. Like the NBD-PE/Rh-PE assay, this assay is based on fluorescence resonance energy transfer (FRET) between the donor, BODIPY500, and the acceptor, BODIPY530. The magnitude of FRET is sensitive to the probe surface concentration, allowing one to detect movement of probes from labeled to unlabeled vesicles during fusion. The high quantum yield of fluorescence, high efficiency of FRET (R(o) is estimated to be approximately 60 A), photostability, and localization in the central hydrophobic region of a bilayer all make this pair of probes quite promising for detecting fusion. We have compared this and two other lipid mixing assays for their abilities to detect the initial events of poly(ethylene glycol) (PEG)-mediated fusion of small unilamellar vesicles (SUVs). We found that the BODIPY500/530 assay showed lipid transfer rates consistent with those obtained using the DPHpPC self-quenching assay, while lipid mixing rates measured with the NBD-PE/Rh-PE RET assay were significantly slower. We speculate that the bulky labeled headgroups of NBD-PE and especially Rh-PE molecules hamper movement of probes through the stalk between fusing vesicles, and thus reduce the apparent rate of lipid mixing.  相似文献   

16.
The interaction of Aluminum with phosphatidyl serine lipid vesicles containing variable amounts of phosphatidyl ethanolamine, phosphatidyl choline and cholesterol has been studied by lipid phase separation monitored by fluorescence quenching. The interaction of Al3+ with neutral phospholipid membranes has also been investigated. Maximal lipid phase separation can be demonstrated in mixed phosphatidyl ethanolamine-cholesterol vesicles when using concentrations of aluminum between 87.5 and 125 microM. Millimolar concentrations of Ca2+, Mn2+, Cd2+ and Zn2+ were without any effect. Aluminum also induced fusion of phospholipid membranes monitored by resonance energy transfer between N-(7-nitro-2,1,3, benzoxadiazol-4 yl) phosphatidyl ethanolamine and N-(lissamine Rhodamine B-sulfonyl) phosphatidyl ethanolamine, either when containing low amounts of phosphatidyl serine (12.5%) or without any negatively charged phospholipid. Aluminum-induced fusion of liposomes was also monitored by the fluorescence of the terbium-dipicolinic acid complex (Tb-DPA3-) formed during fusion of vesicles containing either Tb-(citrate)6- complex or sodium salt of dipicolinic acid.  相似文献   

17.
Fusion of Human Sperm to Prostasomes at Acidic pH   总被引:9,自引:0,他引:9  
Prostasomes are membranous vesicles (150–200 nm diameter) present in human semen. They are secreted by the prostate and contain large amounts of cholesterol, sphingomyelin and Ca2+. In addition, some of their proteins are enzymes. Prostasomes enhance the motility of ejaculated spermatozoa and are involved in a number of additional biological functions. The possibility that they may fuse to sperm has never been proved. In this work, we studied the fusion of sperm to prostasomes by using various methods (relief of octadecyl Rhodamine B fluorescence self-quenching, fluorescence microscopy and flow cytometry) and we found that it occurs at acidic pH (4–5), but not at pH 7.5 pH-dependent fusion relies on the integrity of one or more proteins and is different from the Ca2+-stimulated fusion between rat liver liposomes and spermatozoa that does not require any protein and occurs at neutral pH. We think that the H+-dependent fusion of prostasomes to sperm may have physiological importance by modifying the lipid and protein pattern of sperm membranes. Received: 19 June 1996/Revised: 4 September 1996  相似文献   

18.
Epstein-Barr virus (EBV) infects two cell types, B lymphocytes and epithelial cells. Electron microscopic studies have shown that the virus fuses with the lymphoblastoid cell line Raji but is endocytosed into thin-walled non-clathrin-coated vesicles in normal B cells before fusion takes place. To compare early interactions of EBV with epithelial cells and B cells, a fluorescence dequenching assay of fusion was employed, using virus labeled either with the pH-insensitive probe octadecyl rhodamine B chloride (R18) or with 5(N-octadecanoyl) aminofluorescein (AF), which loses emission intensity at a pH below 7.4. Fusion of virus labeled with R18 could be monitored with B cells, Raji cells, and epithelial cells. Lowering the extracellular pH or pretreatment of cells with ammonium chloride or methylamine had no effect on these measurements. In contrast, fusion of virus labeled with AF could be measured with Raji cells and epithelial cells, but not with normal B cells unless cells were previously treated with ammonium chloride. Fusion of virus with normal B cells was inhibited with chlorpromazine, chloroquine, and sodium azide, but none of these reagents had any effect on fusion with Raji or epithelial cells. These results suggest that entry of EBV into nonpolarized suspensions of epithelial cells occurs by fusion at the cell surface, that EBV may be incapable of fusing with normal B cells unless it has first been endocytosed, and that pH appears to be irrelevant to either event. A combination of the two probes, R18 and AF, may have general use for determining the sites of entry of enveloped viruses that fuse in a pH-independent manner.  相似文献   

19.
S Tomlinson  P W Taylor  J P Luzio 《Biochemistry》1989,28(21):8303-8311
A liposome-bacterial fusion system was developed in order to introduce preformed terminal complement complexes, C5b-9, into the outer membrane of Gram-negative bacteria. Liposomes were prepared from a total phospholipid extract of Salmonella minnesota Re595. Fusion between liposomes and Salmonella sp. or Escherichia coli 17 was dependent on time, temperature, pH, and Ca2+ and PO4- concentration. Only Salmonella sp. with attenuated LPS core regions were able to fuse efficiently with liposomes. It was demonstrated that fusion of liposomes with S. minnesota Re595 or E. coli 17 under optimum conditions resulted in (i) quantitative transfer of the self-quenching fluorescent membrane probe octadecyl rhodamine B chloride from the liposomal bilayer to the bacterial envelope, (ii) transfer of radiolabeled liposomal phospholipid to the bacterial outer membrane and its subsequent translocation to the cytoplasmic membrane, demonstrated by isolation of the bacterial membranes following fusion, and (iii) delivery of liposome-entrapped horseradish peroxidase (HRP) to the periplasmic space, confirmed by a chemiluminescent assay. Following fusion of liposomes incorporating C5b-9 complexes with S. minnesota Re595 or E. coli 17, immunological analysis of the isolated membranes revealed C5b-9 complexes located exclusively in the outer membrane.  相似文献   

20.
Co-reconstitution of influenza and Sendai virus phospholipids and glycoproteins resulted in the formation of membrane vesicles containing the envelope glycoproteins from both viruses within the same membrane. Reconstituted influenza-Sendai hybrids (RISH) were able to lyse human erythrocytes and fuse with their membranes or with living cultured cells at pH 5.0 as well as at pH 7.4, thus exhibiting the fusogenic properties of both viruses. This was also inferred from experiments showing that the fusogenic activity of RISH was inhibited by anti-influenza as well as by anti-Sendai virus antibodies. Fusion of FISH and of reconstituted influenza (RIVE) or reconstituted Sendai virus envelopes (RSVE) with recipient membranes was determined by the use of fluorescently labeled envelopes and fluorescence dequenching methods. Observations with the fluorescence microscope were used to study localization of fused reconstituted envelopes within living cells. Incubation of RISH and RSVE with living cells at pH 7.4 resulted in the appearance of fluorescence rings around the cell plasma membranes and of intracellular distinct fluorescent spots indicating fusion with cell plasma membranes and with membranes of endocytic vesicles, respectively. The fluorescence microscopy observations clearly showed that RIVE failed to fuse, at pH 7.4, with cultured cell plasma membranes, but fused with membranes of endocytic vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号