首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungi capable of sexual reproduction use heterothallic (self-sterile) or homothallic (self-fertile) mating strategies. In most ascomycetes, a single mating type locus, MAT, with two alternative forms (MAT1-1 and MAT1-2) called idiomorphs, controls mating ability. In heterothallic ascomycetes, these alternative idiomorphs reside in different nuclei. In contrast, most homothallic ascomycetes carry both MAT1-1 and MAT1-2 in a single nucleus, usually closely linked. An example of the latter is Gibberella zeae, a species that is capable of both selfing and outcrossing. G. zeae is a devastating cereal pathogen of ubiquitous geographical distribution, and also a producer of mycotoxins that threaten human and animal health. We asked whether G. zeae could be made strictly heterothallic by manipulation of MAT. Targeted gene replacement was used to differentially delete MAT1-1 or MAT1-2 from a wild-type haploid MAT1-1; MAT1-2 strain, resulting in MAT1-1; mat1-2, mat1-1; MAT1-2 strains that were self-sterile, yet able to cross to wild-type testers and, more importantly, to each other. These results indicated that differential deletion of MAT idiomorphs eliminates selfing ability of G. zeae, but the ability to outcross is retained. They also indicated that both MAT idiomorphs are required for self-fertility. To our knowledge, this is the first report of complete conversion of fungal reproductive strategy from homothallic to heterothallic by targeted manipulation of MAT. Practically, this approach opens the door to simple and efficient procedures for obtaining sexual recombinants of G. zeae that will be useful for genetic analyses of pathogenicity and other traits, such as the ability to produce mycotoxins.  相似文献   

2.
Species limits were investigated within the Fusarium graminearum clade (Fg clade) through phylogenetic analyses of DNA sequences from portions of 11 nuclear genes including the mating-type (MAT) locus. Nine phylogenetically distinct species were resolved within the Fg clade, and they all possess contiguous MAT1-1 and MAT1-2 idiomorphs consistent with a homothallic reproductive mode. In contrast, only one of the two MAT idiomorphs was found in five other species, four of which were putatively asexual, and the other was heterothallic. Molecular evolutionary analyses indicate the MAT genes are under strong purifying selection and that they are functionally constrained, even in species for which a sexual state is unknown. The phylogeny supports a monophyletic and apomorphic origin of homothallism within this clade. Morphological analyses demonstrate that a combination of conidial characters could be used to differentiate three species and three species pairs. Species rank is formally proposed for the eight unnamed species within the Fg clade using fixed nucleotide characters.  相似文献   

3.
Mating type genes are central to sexual reproduction and compatibility in Ascomycete fungi. However the "MAT" loci experience unique evolutionary pressures that can result in rapid divergence and enhanced inter-specific gene-flow (lateral gene transfer). In this study, molecular evolution of MAT loci was considered using the genus Fusarium (Teleomorph: Gibberella) as a model. Both MAT1-1 and MAT1-2 "idiomorphs" from eleven species of the Gibberellafujikuroi species complex were sequenced. Molecular evolution of the MAT loci from these heterothallic (self-sterile) species was compared with that of the MAT loci from nine homothallic (self-fertile) species in the Fusariumgraminearum species complex. Although Fusarium has previously been thought to have the same complement of four MAT genes that are found in Neurospora, we found evidence of a novel gene, MAT1-2-3, that may be specific to the Hypocreales. All MAT genes share a similar set of cis-regulatory motifs, although homothallic species might have recruited novel regulatory elements, which could potentially facilitate alternate expression of MAT1-1-1 and MAT1-2-1. FusariumMAT loci displayed evidence consistent with historical lateral gene-flow. Most notably, the MAT1-1 idiomorph of Fusariumsacchari appears to be unrelated to those of other species in the G.fujikuroi complex. In general, FusariumMAT genes are highly divergent. Both positive selection and relaxed selective constraint could account for this phenomenon. However, the extent of both recombination and inter-specific gene-flow in the MAT locus also appears to affect the rate of divergence.  相似文献   

4.
Mating-type (MAT) loci were cloned from two asexual (mitosporic) phytopathogenic ascomycetes, Fusarium oxysporum (a pyrenomycete) and Alternaria alternata (a loculoascomycete), by a polymerase chain reaction (PCR)-based strategy. The conserved high mobility group (HMG) box domain found in the MAT1-2-1 protein was used as a starting point for cloning and sequencing the entire MAT1-2 idiomorph plus flanking regions. Primer pairs designed to both flanking regions were used to amplify the opposite MAT1-1 idiomorph. The MAT1-1 and MAT1-2 idiomorphs were approximately 4.6 and 3.8 kb in F. oxysporum and approximately 1.9 and 2.2 kb in A. alternata, respectively. In both species, the MAT1-1 idiomorph contains at least one gene that encodes a protein with a putative alpha box domain and the MAT1-2 idiomorph contains one gene that encodes a protein with a putative HMG box domain. MAT-specific primers were used to assess the mating type of F. oxysporum and A. alternata field isolates by PCR. MAT genes from A. alternata were expressed. The A. alternata genes were confirmed to be functional in a close sexual relative, Cochliobolus heterostrophus, by heterologous expression.  相似文献   

5.
6.
Gibberella zeae, a self-fertile, haploid filamentous ascomycete, causes serious epidemics of wheat (Triticum aestivum) head blight worldwide and contaminates grain with trichothecene mycotoxins. Anecdotal evidence dating back to the late 19th century indicates that G. zeae ascospores (sexual spores) are a more important inoculum source than are macroconidia (asexual spores), although the fungus can produce both during wheat head blight epidemics. To develop fungal strains to test this hypothesis, the entire mating type (MAT1) locus was deleted from a self-fertile (MAT1-1/MAT1-2), virulent, trichothecene-producing wild-type strain of G. zeae. The resulting MAT deletion (mat1-1/mat1-2) strains were unable to produce perithecia or ascospores and appeared to be unable to mate with the fertile strain from which they were derived. Complementation of a MAT deletion strain by transformation with a copy of the entire MAT locus resulted in recovery of production of perithecia and ascospores. MAT deletion strains and MAT-complemented strains retained the ability to produce macroconidia that could cause head blight, as assessed by direct injection into wheat heads in greenhouse tests. Availability of MAT-null and MAT-complemented strains provides a means to determine the importance of ascospores in the biology of G. zeae and perhaps to identify novel approaches to control wheat head blight.  相似文献   

7.
Lee J  Leslie JF  Bowden RL 《Eukaryotic cell》2008,7(7):1211-1221
In heterothallic ascomycete fungi, idiomorphic alleles at the MAT locus control two sex pheromone-receptor pairs that function in the recognition and chemoattraction of strains with opposite mating types. In the ascomycete Gibberella zeae, the MAT locus is rearranged such that both alleles are adjacent on the same chromosome. Strains of G. zeae are self-fertile but can outcross facultatively. Our objective was to determine if pheromones retain a role in sexual reproduction in this homothallic fungus. Putative pheromone precursor genes (ppg1 and ppg2) and their corresponding pheromone receptor genes (pre2 and pre1) were identified in the genomic sequence of G. zeae by sequence similarity and microsynteny with other ascomycetes. ppg1, a homolog of the Saccharomyces alpha-factor pheromone precursor gene, was expressed in germinating conidia and mature ascospores. Expression of ppg2, a homolog of the a-factor pheromone precursor gene, was not detected in any cells. pre2 was expressed in all cells, but pre1 was expressed weakly and only in mature ascospores. ppg1 or pre2 deletion mutations reduced fertility in self-fertilization tests by approximately 50%. Deltappg1 reduced male fertility and Deltapre2 reduced female fertility in outcrossing tests. In contrast, Deltappg2 and Deltapre1 had no discernible effects on sexual function. Deltappg1/Deltappg2 and Deltapre1/Deltapre2 double mutants had the same phenotype as the Deltappg1 and Deltapre2 single mutants. Thus, one of the putative pheromone-receptor pairs (ppg1/pre2) enhances, but is not essential for, selfing and outcrossing in G. zeae whereas no functional role was found for the other pair (ppg2/pre1).  相似文献   

8.
9.
10.
In heterothallic Ascomycota, two opposite but distinct mating types control all sexual processes. Using mating crosses, mating types were assigned to ten isolates of the heterothallic fungal species Ophiostoma quercus. Primers were subsequently designed to target the MAT1-1-1, MAT1-1-3 (of the mating type 1 idiomorph), and MAT1-2-1 (of the mating type 2 idiomorph) genes in these isolates. Results showed that all isolates contained the full gene sequence for the MAT1-2-1 gene. In addition, fragments of the MAT1-1-1 and MAT1-1-3 genes were sequenced from all isolates. These results were unexpected, as each isolate from a heterothallic species would typically contain only one of the two possible MAT idiomorphs.  相似文献   

11.
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.  相似文献   

12.
Menat J  Cabral AL  Vijayan P  Wei Y  Banniza S 《Mycologia》2012,104(3):641-649
In the genus Glomerella all species studied to date do not fit the usual mating system of heterothallic ascomycetes. This study investigated the mating system of G. truncata (anamorph Colletotrichum truncatum), a pathogen responsible for lentil anthracnose. Twenty-two field isolates from the Canadian prairies were crossed in all possible combinations, including selfings. All isolates also were screened for the presence of the MAT1-1 and MAT1-2 idiomorphs by targeting small conserved areas of the MAT genes (the alpha domain and the high mobility group HMG box) with degenerate primers, and a pair of G. truncata-specific HMG primers (CT21HMG) were designed. The results of the classical mating study suggested that G. truncata is heterothallic. Isolates fell into two incompatibility groups, which is consistent with a bipolar mating system but different from what has been described in other Glomerella species. Molecular screening showed that the HMG box used as a marker for the MAT1-2 idiomorph was present in both partners of fertile crosses in G. truncata, unlike in the typical ascomycete system, but as previously described for two other Glomerella species. G. truncata therefore appears to share unusual mating system characteristics with the other Glomerella species studied to date.  相似文献   

13.
In nature, the chestnut blight fungus, Cryphonectria parasitica, has a mixed mating system; i.e., individuals in the same population have the ability to self and outcross. In the laboratory, C. parasitica appears to have a bipolar self-incompatibility system, typical of heterothallic ascomycetes; selfing is rare, although demonstrable. In this report we describe the cloning and sequencing of both mating-type idiomorphs and their flanking regions at the MAT locus in C. parasitica. The two idiomorphs, MAT1-1 and MAT1-2, are structurally similar to those of other pyrenomycetes described to date. MAT1-1 encodes three genes (MAT1-1-1, MAT1-1-2, and MAT1-1-3) and MAT1-2 encodes a single gene (MAT1-2-1). Unlike MAT idiomorphs in some ascomycetes, the sequences at both ends of the idiomorphs in C. parasitica show a relatively gradual, rather than abrupt, transition from identity in the flanking regions to almost complete dissimilarity in the coding regions. The flanking regions have repetitive polypyrimidine (T/C) and polypurine (A/G) tracts; the significance of these repetitive tracts is unknown. Although we found repetitive tracts in the flanks and gradual transition zones at the ends of the idiomorphs, we found no special features that would explain how selfing occurs in an otherwise self-incompatible fungus.  相似文献   

14.
Coccidioides species, the fungi responsible for the valley fever disease, are known to reproduce asexually through the production of arthroconidia that are the infectious propagules. The possible role of sexual reproduction in the survival and dispersal of these pathogens is unexplored. To determine the potential for mating of Coccidioides, we analyzed genome sequences and identified mating type loci characteristic of heterothallic ascomycetes. Coccidioides strains contain either a MAT1-1 or a MAT1-2 idiomorph, which is 8.1 or 9 kb in length, respectively, the longest reported for any ascomycete species. These idiomorphs contain four or five genes, respectively, more than are present in the MAT loci of most ascomycetes. Along with their cDNA structures, we determined that all genes in the MAT loci are transcribed. Two genes frequently found in common sequences flanking MAT idiomorphs, APN2 and COX13, are within the MAT loci in Coccidioides, but the MAT1-1 and MAT1-2 copies have diverged dramatically from each other. Data indicate that the acquisition of these genes in the MAT loci occurred prior to the separation of Coccidioides from Uncinocarpus reesii. An analysis of 436 Coccidioides isolates from patients and the environment indicates that in both Coccidioides immitis and C. posadasii, there is a 1:1 distribution of MAT loci, as would be expected for sexually reproducing species. In addition, an analysis of isolates obtained from 11 soil samples demonstrated that at three sampling sites, strains of both mating types were present, indicating that compatible strains were in close proximity in the environment.  相似文献   

15.
16.
Conserved regions of mating-type genes were amplified in four representatives of the genus Xanthoria (X. parietina, X. polycarpa, X. flammea, and X. elegans) using PCR-based methods. The complete MAT locus, containing one ORF (MAT1-2-1) coding for a truncated HMG-box protein, and two partial flanking genes, were cloned by screening a genomic lambda phage library of the homothallic X. parietina. The flanking genes, a homologue of SLA2 of Saccharomyces cerevisiae and a DNA lyase gene, served to amplify the two idiomorphs of the X. polycarpa MAT locus. Each idiomorph contains a single gene: MAT1-2-1 codes for a HMG-box protein, MAT1-1-1 encodes an alpha domain protein. The occurrence of mating-type genes in eight single spore isolates derived from one ascus was studied with a PCR assay. In the homothallic X. parietina a HMG fragment, but no alpha box fragment was found in all isolates, whereas in X. elegans, another homothallic species, all tested isolates contained a fragment of both idiomorphs. Conversely, isolates of the heterothallic X. polycarpa contained either a HMG or an alpha box fragment, but never both.  相似文献   

17.
18.
All sexually fertile strains in the Gibberella fujikuroi species complex are heterothallic, with individual mating types conferred by the broadly conserved ascomycete idiomorphs MAT-1 and MAT-2. We sequenced both alleles from all eight mating populations, developed a multiplex PCR technique to distinguish these idiomorphs, and tested it with representative strains from all eight biological species and 22 additional species or phylogenetic lineages from this species complex. In most cases, either an approximately 800-bp fragment from MAT-2 or an approximately 200-bp fragment from MAT-1 is amplified. The amplified fragments cosegregate with mating type, as defined by sexual cross-fertility, in a cross of Fusarium moniliforme (Fusarium verticillioides). Neither of the primer pairs amplify fragments from Fusarium species such as Fusarium graminearum, Fusarium pseudograminearum, and Fusarium culmorum, which have, or are expected to have, Gibberella sexual stages but are thought to be relatively distant from the species in the G. fujikuroi species complex. Our results suggest that MAT allele sequences are useful indicators of phylogenetic relatedness in these and other Fusarium species.  相似文献   

19.
Acremonium chrysogenum, the fungal producer of the pharmaceutically relevant beta-lactam antibiotic cephalosporin C, is classified as asexual because no direct observation of mating or meiosis has yet been reported. To assess the potential of A. chrysogenum for sexual reproduction, we screened an expressed sequence tag library from A. chrysogenum for the expression of mating type (MAT) genes, which are the key regulators of sexual reproduction. We identified two putative mating type genes that are homologues of the alpha-box domain gene, MAT1-1-1 and MAT1-1-2, encoding an HPG domain protein defined by the presence of the three invariant amino acids histidine, proline, and glycine. In addition, cDNAs encoding a putative pheromone receptor and pheromone-processing enzymes, as well as components of a pheromone response pathway, were found. Moreover, the entire A. chrysogenum MAT1-1 (AcMAT1-1) gene and regions flanking the MAT region were obtained from a genomic cosmid library, and sequence analysis revealed that in addition to AcMAT1-1-1 and AcMAT1-1-2, the AcMAT1-1 locus comprises a third mating type gene, AcMAT1-1-3, encoding a high-mobility-group domain protein. The alpha-box domain sequence of AcMAT1-1-1 was used to determine the phylogenetic relationships of A. chrysogenum to other ascomycetes. To determine the functionality of the AcMAT1-1 locus, the entire MAT locus was transferred into a MAT deletion strain of the heterothallic ascomycete Podospora anserina (the PaDeltaMAT strain). After fertilization with a P. anserina MAT1-2 (MAT(+)) strain, the corresponding transformants developed fruiting bodies with mature ascospores. Thus, the results of our functional analysis of the AcMAT1-1 locus provide strong evidence to hypothesize a sexual cycle in A. chrysogenum.  相似文献   

20.
Connections between fungal development and secondary metabolism have been reported previously, but as yet, no comprehensive analysis of a family of secondary metabolites and their possible role in fungal development has been reported. In the present study, mutant strains of the heterothallic ascomycete Cochliobolus heterostrophus, each lacking one of 12 genes (NPS1 to NPS12) encoding a nonribosomal peptide synthetase (NRPS), were examined for a role in sexual development. One type of strain (Delta nps2) was defective in ascus/ascospore development in homozygous Delta nps2 crosses. Homozygous crosses of the remaining 11 Delta nps strains showed wild-type (WT) fertility. Phylogenetic, expression, and biochemical analyses demonstrated that the NRPS encoded by NPS2 is responsible for the biosynthesis of ferricrocin, the intracellular siderophore of C. heterostrophus. Functional conservation of NPS2 in both heterothallic C. heterostrophus and the unrelated homothallic ascomycete Gibberella zeae was demonstrated. G. zeae Delta nps2 strains are concomitantly defective in intracellular siderophore (ferricrocin) biosynthesis and sexual development. Exogenous application of iron partially restored fertility to C. heterostrophus and G. zeae Delta nps2 strains, demonstrating that abnormal sexual development of Delta nps2 strains is at least partly due to their iron deficiency. Exogenous application of the natural siderophore ferricrocin to C. heterostrophus and G. zeae Delta nps2 strains restored WT fertility. NPS1, a G. zeae NPS gene that groups phylogenetically with NPS2, does not play a role in sexual development. Overall, these data demonstrate that iron and intracellular siderophores are essential for successful sexual development of the heterothallic ascomycete C. heterostrophus and the homothallic ascomycete G. zeae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号