首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated internodes of Chara corallina and Nitella flexilis have been used to determine the concentration of one passively permeating solute in the presence of non-permeating solutes. The technique was based on the fact that the shape of the peaks of the biphasic responses of cell turgor (as measured in a conventional way using the cell pressure probe) depended on the concentration and composition of the solution and on the permeability and reflection coefficients of the solutes. Peak sizes were proportional to the concentration of the permeating solute applied to the cell. Thus, using the selective properties of the cell membrane as the sensing element and changes of turgor pressure as the physical signal, plant cells have been used as a new type of biosensor based on osmotic principles. Upon applying osmotic solutions, the responses of cell turgor (P) exactly followed the P(t) curves predicted from the theory based on the linear force/flow relations of irreversible thermodynamics. The complete agreement between theory and experiment was demonstrated by comparing measured curves with those obtained by either numerically solving the differential equations for volume (water) and solute flow or by using an explicit solution of the equations. The explicit solution neglected the solvent drag which was shown to be negligible to a very good approximation. Different kinds of local beers (regular and de-alcoholized) were used as test solutions to apply the system for measuring concentrations of ethanol. The results showed a very good agreement between alcohol concentrations measured by the sensor technique and those obtained from conventional techniques (enzymatic determination using alcohol dehydrogenase or from measurement of the density and refraction index of beer). However, with beer as the test solution, the characean internodes did show irreversible changes of the transport properties of the membranes leading to a shift in the responses when cells were treated for longer than 1 h with diluted beer. The accuracy and sensitivity of the osmotic biosensor technique as well as its possible applications are discussed.  相似文献   

2.
Does turgor limit growth in tall trees?   总被引:16,自引:2,他引:14  
The gravitational component of water potential contributes a standing 0.01 MPa m?1 to the xylem tension gradient in plants. In tall trees, this contribution can significantly reduce the water potential near the tree tops. The turgor of cells in buds and leaves is expected to decrease in direct proportion with leaf water potential along a height gradient unless osmotic adjustment occurs. The pressure–volume technique was used to characterize height‐dependent variation in leaf tissue water relations and shoot growth characteristics in young and old Douglas‐fir trees to determine the extent to which growth limitation with increasing height may be linked to the influence of the gravitational water potential gradient on leaf turgor. Values of leaf water potential (Ψl), bulk osmotic potential at full and zero turgor, and other key tissue water relations characteristics were estimated on foliage obtained at 13.5 m near the tops of young (approximately 25‐year‐old) trees and at 34.7, 44.2 and 55.6 m in the crowns of old‐growth (approximately 450‐year‐old) trees during portions of three consecutive growing seasons. The sampling periods coincided with bud swelling, expansion and maturation of new foliage. Vertical gradients of Ψl and pressure–volume analyses indicated that turgor decreased with increasing height, particularly during the late spring when vegetative buds began to swell. Vertical trends in branch elongation, leaf dimensions and leaf mass per area were consistent with increasing turgor limitation on shoot growth with increasing height. During the late spring (May), no osmotic adjustment to compensate for the gravitational gradient of Ψl was observed. By July, osmotic adjustment had occurred, but it was not sufficient to fully compensate for the vertical gradient of Ψl. In tall trees, the gravitational component of Ψl is superimposed on phenologically driven changes in leaf water relations characteristics, imposing potential constraints on turgor that may be indistinguishable from those associated with soil water deficits.  相似文献   

3.
Osmotic regulation of assimilate efflux from excised coats of developing Vicia faba (cv. Coles Prolific) seed was examined by exposing these to bathing solutions (adjusted to –0. 02 to –0. 75 MPa with sorbitol) introduced into the cavity vacated by the embryo. 14C photosynthate efflux was found to be independent of solution osmotic potentials below –0. 63 MPa. At higher osmotic potentials, efflux was stimulated and exhibited a biphasic response to osmotic potential with apparent saturation being reached at –0. 37 MPa. Efflux could be repeatedly stimulated and slowed by exposing seed coats to solutions of high and low osmotic potentials, respectively. Manipulation of components of tissue water potential, with slowly- and rapidly-permeating osmotica, demonstrated that turgor functioned as the signal regulating 14C photosynthate efflux. Com-partmental analysis of 14C photosynthate preloaded seed coats was consistent with exchange from 4 kinetically-distinct compartments. The kinetics of turgor-dependent efflux exhibited characteristics consistent with the transport mechanism residing in the plasma membranes of the unloading cells. These characteristics included the rapidity (<2 min) of the efflux response to turgor increases, similar rate constants for efflux from the putative turgor-sensitive and cytoplasmic compartments and the apparent small pool size from which turgor-dependent efflux could repeatedly occur. In contrast, influx of [14C] sucrose across the plasma and tonoplast membranes was found to be insensitive to turgor. The plasma membrane [14C] sucrose influx was unaffected by p-chloromercuribenzenesulfonic acid and erythrosin B and exhibited a linear dependence on the external sucrose concentration. This behaviour suggested that influx across the plasma membrane occurs by passive diffusion. Preloading excised seed coats with a range of solutes demonstrated that turgor-dependent efflux exhibited partial solute selectivity. Based on these findings, it is proposed that turgor controls assimilate exchange from the seed coat by regulating an efflux mechanism located in the plasma membranes of the unloading cells.  相似文献   

4.
Abstract: A new combined turgor/membrane potential probe (T-EP probe) monitored cell turgor and membrane potential simultaneously in single giant cells. The new probe consisted of a silicone oil-filled micropipette (oil-microelectrode), which conducted electric current. Measurements of turgor and hydraulic conductivity were performed as with the conventional cell pressure probe besides the membrane potential. In internodal cells of Chara corallina, steady state turgor (0.5-0.7 MPa) and resting potentials (-200 to ?220 mV) in APW, and hydraulic conductivity (0.07 to 0.21 × 10~5 m s?1 MPa?1) were measured with the new probe, and cells exhibited healthy cytoplasmic streaming for at least 24 h during measurements. When internodal cells of Chara corallina were treated with 30, 20, 10, and 5 mM KCI, turgor responded immediately to all concentrations, and the osmotic changes in the medium were measured. Action potentials, which brought the membrane potential to a steady depolarization that measured the concentration difference of K+ in the medium, were induced in a concentration — dependent delay and occurred only 30, 20, and 10 mM of KCl. When the solution was changed back to APW, the repolarization of membrane potential consisted of a quick and a following slow phase. During the quick phase, which took place immediately and lasted 1 to 3 min, the plasma membrane remained activated. The membrane was gradually deactivated in the slow phase, and entirely deactivated when the membrane potential recovered to the resting potential in APW. Although the activated plasma membrane was permeable to K+, no major ion channels were activated on the tonoplast, and therefore, internodal cells of Chara corallina did not regulate turgor when osmotic potential changed in the surrounding medium.  相似文献   

5.
Seasonal and diurnal variation and rehydration effects of pressure-volume parameters in Pseudotsuga menziesii (Mirb.) Franco from a plantation in central Pennsylvania, USA, were evaluated during May-September, 1989. Predawn elastic modulus was lowest in overwintering and newly expanded shoots in May and June, respectively, whereas predawn osmotic potentials at full and zero turgor were lowest in May and in early September, following an August drought. Seasonal variation in predawn relative water content at zero turgor was highly correlated with increases and decreases in elastic modulus and osmotic potential. Diurnal osmotic adjustment resulted in nearly constant turgor pressure, despite decreases in bulk shoot water potential. Elastic modulus decreased diurnally on 1 August and increased on 3 September. Decreases in osmotic potential and/or elastic modulus on 24 June and 1 August lowered the relative water content at zero turgor. Plateaus in pressure-volume data caused by excess apoplastic water, were present in 67% of naturally rehydrated shoots and in all of the shoots artificially rehydrated for 3, 6, 12 and 24 h, and they increased in volume with rehydration time. Plateaus represented 80–95% of the excess apoplastic water lost during pressure-volume analysis. Correcting for plateaus via linear regression had no significant effect on osmotic potential at full turgor; however, uncorrected elastic modulus and relative water content at zero turgor were often significantly lower than the plateau-corrected values, particularly in artificially rehydrated shoots. Plateau-corrected osmotic potential at full turgor and osmotic potential at zero turgor were significantly higher in most artificially rehydrated shoots than in those naturally rehydrated as the result of loss of symplastic solutes. Corrected elastic modulus decreased following 12 and 24 h of rehydration and corrected relative water content at zero turgor increased in as little as 3 h of rehydration. These results indicate that seasonal and diurnal patterns of tissue-water parameters in Pseudotsuga menziesii vary with plant phenology and drought conditions, and that the length of rehydration period is an important consideration for pressure-volume studies.  相似文献   

6.
While solute transport and ethylene production by plant tissue are sensitive to the osmotic concentration of the solution bathing the tissue, the influence of tissue water relations and specifically tissue turgor potential on the kinetics of 1-aminocyclopropane-1-carboxylic acid (ACC) uptake into the vacuolar compartment and ethylene production have not been examined. 1-Aminocyclopropane-1-carboxylic acid transport and ethylene production were examined in tomato (Lycopersicon esculentum Mill. cv. Liberty) pericarp slices incubated in solutions having a range of mannitol, polyethylene glycol 3350 and ethylene glycol concentrations known to affect tissue water relations. Tissue osmotic and turgor potentials were derived from osmolality measurements of cell saps recovered by freeze-thawing and corrected for the contribution of the free-space solution. When relatively nonpermeable (mannitol or polyethylene glycol 3350) osmotica were used, both ACC uptake and ethylene production were greatest at a solution osmolality of 230 milliosmolal where tissue turgor potential ranged between 120 and 140 kPa. At higher and lower turgor potentials, the high-affinity saturating component of ACC uptake and ethylene production were inhibited, and ACC efflux from the vacuolar compartment was increased. The inhibition of ACC uptake was evident as a decrease in Vmax with no effect on Km. Turgor potential changes caused by adjusting solution osmolality with mannitol or polyethylene glycol 3350 were accompanied by changes in the osmotic potential and water potential of the tissue. The effects of turgor potential vs the osmotic and water potentials of tomato pericarp slices were differentiated by comparing responses to nonpermeable osmotica and mixtures of nonpermeable and permeable osmotica. Ethylene glycol-mannitol mixtures had effects on the osmotic potential and water potential of the tissue similar to those of nonpermeable osmotica but had less effect on tissue turgor, ACC transport and ethylene production. Incubating tissue in solutions without nonpermeable osmotica osmotically shocked the tissue. Increasing solution osmolality with ethylene glycol in the absence of nonpermeable osmotica increased tissue turgor and ethylene production. The present study indicates that tissue turgor is an important factor affecting the kinetics of ACC uptake into the vacuolar compartment and ethylene production in tomato pericarp slices.  相似文献   

7.
The changes in turgor pressure that accompany the mobilisation of sucrose and accumulation of salts by excised disks of storage-root tissue of red beet (Beta vulgaris L.) have been investigated. Disks were washed in solutions containing mannitol until all of their sucrose had disappeared and then were transferred to solutions containing 5 mol·m-3 KCl+5 mol·m-3 NaCl in addition to the mannitol. Changes in solute contents, osmotic pressure and turgor pressure (measured with a pressure probe) were followed. As sucrose disappeared from the tissue, reducing sugars were accumulated. For disks in 200 mol·m-3 mannitol, the final reducing-sugar concentration equalled the initial sucrose concentration so there was no change in osmotic pressure or turgor pressure. At lower mannitol concentrations, there was a decrease in tissue osmotic pressure which was caused by a turgor-driven leakage of solutes. At concentrations of mannitol greater than 200 mol·m-3, osmotic pressure and turgor pressure increased because reducing-sugar accumulation exceeded the initial sucrose concentration. When salts were provided they were absorbed by the tissue and reducing-sugar concentrations fell. This indicated that salts were replacing sugars in the vacuole and releasing them for metabolism. The changes in salf and sugar concentrations were not equal because there was an increase in osmotic pressure and turgor pressure. The amount of salt absorbed was not affected by the external mannitol concentration, indicating that turgor pressure did not affect this process. The implications of the results for the control of turgor pressure during the mobilisation of vacuolar sucrose are discussed.To whom correspondence should be addressed.  相似文献   

8.
Leaf age and salinity influence water relations of pepper leaves   总被引:2,自引:0,他引:2  
Plant growth is reduced under saline conditions even when turgor in mature leaves is maintained by osmotic adjustment. The objective of this study was to determine if young leaves from salt-affected plants were also osmotically adjusted. Pepper plants (Capsicum annuum L. cv. California Wonder) were grown in several levels of solution osmotic potential and various components of the plants' water relations were measured to determine if young, rapidly growing leaves could accumulate solutes rapidly enough to maintain turgor for normal cell enlargement. Psychrometric measurements indicated that osmotic adjustment is similar for both young and mature leaves although osmotic potential is slightly lower for young leaves. Total water potential is also lower for young leaves, particularly at dawn for the saline treatments. The result is reduced turgor under saline conditions at dawn for young but not mature leaves. This reduced turgor at dawn, and presumably low night value, is possibly a cause of reduced growth under saline conditions. No differences in leaf turgor occur at midday. Porometer measurements indicated that young leaves at a given salinity level have a higher stomatal conductance than mature leaves, regardless of the time of day. The result of stomatal closure is a linear reduction of transpiration.  相似文献   

9.
Abstract Midday water potentials of blades of the dune grasses Ammophila arenaria (L.) Link and Elymus mollis Trin. ex Spreng. growing in situ declined over the summer growing period, indicating a trend of increasing water stress. An analysis of the water relations characteristics of these blades using pressure-volume techniques demonstrated that both species increased bulk osmotic pressure at full hydration () and, therefore, bulk turgor as an acclimation response. In A. arenaria, however, the increase of osmotic pressure (+ 0.35 MPa) was entirely the result of decreasing symplasmic water content. The increase of osmotic pressure (+ 0.54 MPa) observed in E. mollis blades was due to solute accumulation (72% of Δ) and to a lesser degree, decreased symplasmic water content (28% of Δ). Osmotic adjustment in E. mollis blades was accompanied by a significant decrease in tissue elasticity (max went from 12 to 19 MPa). The elastic properties of A. arenaria blades remained constant over the same period and had a maximum modulus (10 MPa) that was always less than that of E. mollis, As estimated from Höfler plots, these seasonal adjustments of osmotic pressure and differences in tissue elasticity enabled plants in situ to maintain turgor pressure in the range of 0.5–0.6 MPa at the lowest water potentials of mid-August. Laboratorygrown plants exhibited the species-specific differences in osmotic pressure, turgor pressure, and tissue elasticity observed in field plants. Although certain alterations of leaf structure were expected to coincide with the observed changes and species-specific differences in symplasmic water content and tissue elasticity, these could not be detected by measurements of specific leaf weight or the ratio of dry matter to saturated water content.  相似文献   

10.
The giant marine alga Valonia utricularis is capable of regulating its turgor pressure in response to changes in the osmotic pressure of the sea water. The turgor pressure response comprises two phases, a fast, exponential phase arising exclusively from water shifting between the vacuole and the external medium (time constant about 10 min) and a second very slow, almost exponential phase adjusting (but not always) the turgor pressure near to the original value by release or uptake of KCl (time constant about 5 h). The changes in the vacuolar membrane potential as well as in the individual conductances of the tonoplast and plasmalemma accompanying turgor pressure regulation were measured by using the vacuolar perfusion assembly (with integrated microelectrodes, pressure transducers and pressure‐regulating valves) as described by Wang et al. (J. Membrane Biology 157, 311–321, 1997). Measurements on pressure‐clamped cells gave strong evidence that the turgor pressure, but not effects related to water flow (i.e. electro‐osmosis or streaming potential) or changes in the internal osmotic pressure and in the osmotic gradients, triggers the cascade of osmotic and electrical events recorded after disturbance of the osmotic equilibrium. The findings definitely exclude the existence of osmosensors as postulated for other plant cells and bacteria. There was also evidence that turgor pressure signals were primarily sensed by ion transporters in the vacuolar membrane because conductance changes were first recorded in the many‐folded tonoplast and then significantly delayed in the plasmalemma independent of the direction of the osmotic challenge. Consistently, turgor pressure up‐regulation (but not down‐regulation) could be inhibited reversibly by external addition of the K+ transport inhibitor Ba2+ and/or by the Cl transport inhibitor 4,4′‐diisothiocyanatostilbene‐2,2′‐disulfonic acid (DIDS). Extensive studies under iso‐, hyper‐ and hypo‐osmotic conditions revealed that K+ and Cl contribute predominantly to the plasmalemma conductance. Addition of 0.3 mm NaCN showed further that part of the K+ and Cl transporters depended on ATP. These transporters are apparently up‐regulated upon hyper‐osmotic, but not hypo‐osmotic challenge. These findings explain the strong increase of the K+ influx upon lowering turgor pressure and the less pronounced pressure‐dependence of the Cl influx of V. utricularis reported in the literature. The data derived from the blockage experiments under hypo‐osmotic conditions were also equally consistent with the experimental findings that the K+ efflux is solely passive and progressively increases with increasing turgor pressure due to an increase of the volumetric elastic modulus of the cell wall. However, despite unravelling some of the sequences and other components involved in turgor pressure regulation of V. utricularis the co‐ordination between the ion transporters in the tonoplast and plasmalemma remains unresolved because of the failure to block the tonoplast transporters by addition of Ba2+ and DIDS from the vacuolar side.  相似文献   

11.
Turgor maintenance, solute content and recovery from water stress were examined in the drought-tolerant shrub Artemisia tridentata. Predawn water potentials of shrubs receiving supplemental water remained above ?2 MPa throughout summer, while predawn water potentials of untreated shrubs decreased to ?5 MPa. Osmotic potentials decreased in conjunction with water potentials maintaining turgor pressures above 0 MPa. The decreases in osmotic potentials were not the result of osmotic adjustment (i.e. solute accumulation). Leaf solute contents decreased during drought, but leaf water volumes decreased more than 75% from spring to summer, thereby passively concentrating solutes within the leaves. The maintenance of positive turgor pressures despite decreases in leaf water volumes is consistent with other studies of species with elastic cell walls. Inorganic ion, organic acid, and carbohydrate contents of leaves declined during drought. The only solutes accumulating in leaves of A. tridentata with water stress were proline and a cyclitol, both considered compatible solutes. Total and osmotic potentials recovered rapidly following rewatering of shrubs; solute contents did not change except for a decrease in proline. Maintaining turgor through the passive concentration of solutes may be advantageous compared to synthesis of new solutes for osmotic adjustment in arid environments.  相似文献   

12.
The growing cells of hydroponic maize roots expand at constant turgor pressure (0.48 MPa) both when grown in low-(0.5 mol m-3 CaCl2) or full-nutrient (Hoagland's) solution and also when seedlings are stressed osmotically (0.96 MPa mannitol). Cell osmotic pressure decreases by 0.1–0.2 MPa during expansion. Despite this, total solute influx largely matches the continuously-varying volume expansion-rate of each cell. K+ in the non-osmotically stressed roots is a significant exception-its concentration dropping by 50% regardless of the presence or absence of K+ in the nutrient medium. This corresponds to the drop in osmotic pressure. Nitrate appears to replace Cl- in the Hoagland-grown cells.Analogous insensitivity of solute gradients to external solutes is observed in the radial distribution of water and solutes in the cortex 12 mm from the tip. Uniform turgor and osmotic pressures are accompanied by opposite gradients of K+ and Cl-, outwards, and hexoses and amino acids, inwards, for plants grown in either 0.5 mol m-3 CaCl2 or Hoagland's solution (with negligible Cl-). K+ and Cl- levels within both gradients were slightly higher when the ions were available in the medium. The gradients themselves are independent of the direction of solute supply. In CaCl2 solution all other nutrients must come from the stele, in Hoagland's solution inorganic solutes are available in the medium.24 h after osmotic stress, turgor pressure is recovered at all points in each gradient by osmotic adjustment using organic solutes. Remarkably, K+ and Cl- levels hardly change, despite their ready availability. Hexoses are responsible for some 50% of the adjustment with mannitol for a further 30%. Some 20% of the final osmotic pressure remains to be accounted for. Proline and sucrose are not significantly involved. Under all conditions a standing water potential step of 0.2 MPa between the rhizodermis and its hydroponic medium was found. We suggest that this is due to solute leakage.Abbreviations EDX energy dispersive X-ray microanalysis - water potential - 11-1 cell osmotic pressure - P turgor pressure  相似文献   

13.
Changes in leaf water relations under water stress were examined. In experiment 1, water stress was imposed by withholding irrigation to potted seedlings of deciduous oak, Quercus crispula and Q. serrata. Changes in the pressure–volume (P–V) curve in mature leaves were followed. The leaf water potential at turgor loss (Ψl,tlp) significantly decreased after 13 d of drought treatment. The bulk elastic modulus (?) significantly decreased, which contributed to the maintenance of cell turgor together with the decrease in osmotic potential. In experiment 2, water stress was imposed by notching a branch of a Q. serrata tree. After the notching, the daily minimum leaf water potential (Ψl) decreased, and a significant decrease in Ψl,tlp was observed 15 d after notching. The osmotic potential at water saturation (Ψπ,sat) did not decrease significantly until 25 d after notching whereas, ? had already decreased significantly within 15 d after notching and increased promptly after substantial precipitation. It was confirmed that ? of mature leaves decreased reversibly in water stress. This response of ? was more rapid than that of the osmotic potential and, thus, effectively maintained cell turgor when water stress was suddenly imposed on the leaves.  相似文献   

14.
Abstract Diurnal cycling of osmotic potential was studied in leaves of cotton plants (Gossypium hirsutum L.) grown in the field. Osmotic potential was determined by a pressure-volume procedure as the value coinciding with zero turgor. In plants grown under favourable conditions (no water stress or N stress), osmotic potential at zero-turgor measured at midday was initially about 0.3 MPa lower than before dawn, but this cycling disappeared during the season as the number of fruits per plant increased. In water-stressed or N-deficient plants, osmotic cycling was decreased or even eliminated. Across treatments, cycling of osmotic potential occurred only when plants carried at least 560 cm2 of leaf area per fruit. The results are interpreted to mean that diurnal cycling of osmotic potential reveals a ‘sink-limited’ condition within the plant.  相似文献   

15.
Electrical impedance measurements made on white spruce, Picea glauca (Moench) Voss, stems were related to shoot free sugar contents and to osmotic, turgor and water potential. During seasonal dormancy induction, there were commensurate increases in free sugar contents, osmotic potential at full turgor and impedance which resulted in linear relationships among these variables. When measured over the course of laboratory drying, impedance increased curvilinearly with decreasing relative water content. There was a linear increase in impedance with decreasing water potential, with a break point coincident with the turgor loss point, possibly attributed to disruption to current flow through broken plasmodesmatal connections between adjacent cells. This technique offers a non-destructive method to measure tissue free sugar content, and therefore, short- and long-term shifts in parameters historically derived from pressure-volume analysis.  相似文献   

16.
Because iso‐ and anisohydric species differ in stomatal regulation of the rate and magnitude of fluctuations in shoot water potential, they may be expected to show differences in the plasticity of their shoot water relations components, but explicit comparisons of this nature have rarely been made. We subjected excised shoots of co‐occurring anisohydric Juniperus monosperma and isohydric Pinus edulis to pressure‐volume analysis with and without prior artificial rehydration. In J. monosperma, the shoot water potential at turgor loss (ΨTLP) ranged from ?3.4 MPa in artificially rehydrated shoots to ?6.6 MPa in shoots with an initial Ψ of ?5.5 MPa, whereas in P. edulis mean ΨTLP remained at ~ ?3.0 MPa over a range of initial Ψ from ?0.1 to ?2.3 MPa. The shoot osmotic potential at full turgor and the bulk modulus of elasticity also declined sharply with shoot Ψ in J. monosperma, but not in P. edulis. The contrasting behaviour of J. monosperma and P. edulis reflects differences in their capacity for homeostatic regulation of turgor that may be representative of aniso‐ and isohydric species in general, and may also be associated with the greater capacity of J. monosperma to withstand severe drought.  相似文献   

17.
The effects of auxin and osmotic stress on elongation growth of maize (Zea mays L.) coleoptile segments are accompanied by characteristic changes in the extensibility of the growth-limiting cell walls. At full turgor auxin causes growth by an increase in wall extensibility (wall looseining). Growth can be stopped by an osmotically produced step-down in turgor of 0.45 MPa. Under these conditions auxin causes the accumulation of a potential for future wall extension which is released after restoration of full turgor. Turgor reduction causes a reversible decrease in wall extensibility (wall stiffening) both in the presence and absence of auxin. These changes in vivo are correlated with corresponding changes in the rheological properties of the cell walls in vitro which can be traced back to specific modifications in the shape of the hysteretic stress-strain relationship. The longitudinally load-bearing walls of the coleoptile demonstrate almost perfect viscoelasticity as documented by a nearly closed hysteresis loop. Auxin-mediated wall loosening causes an increase of loop width and thus affects primarily the amount of hysteresis in the isolated wall. In contrast, turgor reduction by osmotic stress reduces loop length and thus affects primarily the amount of viscoelastic wall extensibility. Pretreatment of segments with anoxia and H2O2 modify the hysteresis loop in agreement with the conclusion that the wall-stiffening reaction visualized under osmotic stress in vivo is an O2-dependent process in which O2 can be substituted by H2O2. Cycloheximide specifically inhibits auxin-mediated wall loosening without affecting wall stiffening, and this is mirrored in specific changes of the hysteresis loop. Corroborating a previous in vivo study (Hohl et al. 1995, Physiol. Plant. 94: 491–498) these results show that cell wall stiffening in vivo can also be demonstrated by Theological measurements with the isolated cell wall and that this process can be separated from cell wall loosening by specific changes in the shape of the hysteresis loop.  相似文献   

18.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   

19.
Using the pressure volume analysis (PV analysis) on the shoots of Norway spruce (Picea abies [L.] Karst.) and the here presented capillary microcryoscopy of the needle press sap of the same shoots, it was possible to determine the amount of apoplastic water in the needles (Wan) as well as in the defoliated shoots (Was). Additionally, the bulk osmotic pressure at full water saturation in the symplast of the needles and defoliated shoots (πon and πos) was determined. The dependence of the bulk-averaged turgor pressure (Pt) on the water content and the relationship between the bulk modulus of elasticity of the needles (?n) and the bulk-averaged needle turgor pressure (Ptn) was shown with help of the PV analysis on the whole shoots and defoliated shoots. The study was conducted at the end of the vegetation period in 1987 and during winter 1988. The proportion of Wan in the total needle water content (Wtn) was 14% in September 1987 and 12.5% in March 1988. The respective percentage of Was in Wts were 27% and 25%. The amount of apoplastic water depended on the ratio of the dry weight of defoliated shoots to the dry weight of the whole shoots. A standard mean value for the amount of Wan in the total water content of the shoots (Wt) was therefore not possible. The bulk osmotic pressure at full water saturation in the needle symplasts was –1.9 MPa in September 1987 and –2.2 MPa in winter 1988. The respective values of the bulk osmotic pressures in the symplast of the defoliated shoots (πos) were –1.5 MPa and –1.7 MPa. Thus πon was 0.1 MPa lower and πos 0.3–0.4 MPa higher than the average osmotic pressure during full water saturation in the symplast of the whole shoots (πo). The relation between bulk-averaged turgor pressure and water content showed that during water loss Ptn dropped more rapidly than the turgor pressure of defoliated shoots (Pts). Consequently the needles were less elastic than the defoliated shoots. The turgor values of whole shoots followed an intemediate course between Ptn and Pts. The flat course of Pts seems to be the main reason for the often observed “plateau” of ψ-isotherms of whole shoots near full turgor.  相似文献   

20.
Summary Long-term xylem pressure measurements were performed on the lianaTetrastigma voinierianum (grown in a tropical greenhouse) between heights of 1 m and 9.5 m during the summer and autumn seasons with the xylem pressure probe. Simultaneously, the light intensity, the temperature, and the relative humidity were recorded at the measuring points. Parallel to the xylem pressure measurements, the diurnal changes in the cell turgor and the osmotic pressure of leaf cells at heights of 1 m and 5 m (partly also at a height of 9.5 m) were recorded. The results showed that tensions (and height-varying tension gradients) developed during the day time in the vessels mainly due to an increase in the local light intensity (at a maximum 0.4 MPa). The decrease of the local xylem pressure from positive, subatmospheric or slightly above-atmospheric values (established during the night) to negative values after daybreak was associated with an almost 1 1 decrease in the cell turgor pressure of the mesophyll cells (on average from about 0.4 to 0.5 MPa down to 0.08 MPa). Similarly, in the afternoon the increase of the xylem pressure towards more positive values correlated with an increase in the cell turgor pressure (ratio of about 1 1). The cell osmotic pressure remained nearly constant during the day and was about 0.75–0.85 MPa between 1 m and 9.5 m (within the limits of accuracy). These findings indicate that the turgor pressure primarily determines the corresponding pressure in the vessels (and vice versa) due to the tight hydraulic connection and thus due to the water equilibrium between both compartments. An increase in the transpiration rate (due to an increase in light intensity) results in very rapid establishment of a new equilibrium state by an equivalent decrease in the xylem and cell turgor pressure. From the xylem, cell turgor, and cell osmotic pressure data the osmotic pressure (or more accurately the water activity) of the xylem sap was calculated to be about 0.35–0.45 MPa; this value was apparently not subject to diurnal changes. Considering that the xylem pressure is determined by the turgor pressure (and vice versa), the xylem pressure of the liana could not drop to — in agreement with the experimental results — less than -0.4 MPa, because this pressure corresponds to zero turgor pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号