首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serotonin (5-hydroxytryptamine) type 3 (5-HT3) receptors are transmembrane ligand-gated ion channels. Although several 5-HT3 receptor agonists have been used as preclinical tools, SR 57227A is the most commonly used 5-HT3 receptor agonist with the ability to cross the blood brain barrier. However, the precise pharmacological profile of SR 57227A remains unclear. Therefore, we examined the pharmacological profile of SR 57227A at the 5-HT3A and 5-HT3AB receptors. We microinjected Xenopus laevis oocytes with human 5-HT3A complementary RNA (cRNA) or a combination of human 5-HT3A and human 5-HT3AB cRNA and performed two electrode voltage clamp recordings of 5-HT3A and 5-HT3AB receptor current in the presence of SR 57227A. Results showed that SR 57227A acts as partial agonist/partial antagonist at the 5-HT3 receptor. Interestingly, SR 57227A specifically reduced subsequent current amplitudes induced by 5-HT or SR 57227A. Based on its 5-HT3 receptor partial agonist/partial antagonist properties, we predict that SR 57227A functions as a serotonin stabilizer.  相似文献   

2.
The 5-HTergic system and particularly 5-HT2A receptors have been involved in prefrontal cognitive functions, but the underlying mechanisms by which the serotonin (5-HT) system modulates these processes are still unclear. In this work, the effects of prefrontal 5-HTergic denervation on the density and expression levels of 5-HT2A receptors were evaluated by immunohistochemical and molecular biology studies in the prefrontal cortex (PFC). The [3H]-Ketanserin binding study revealed an increase in the Bmax, along with no change in the binding affinity (KD) for 5-HT2A receptors. The increase in PFC of 5-HT2A receptor density in response to denervation was accompanied by increase in 5-HT2A receptor mRNA and protein levels. This increase in the number of 5-HT2A receptors may be interpreted as an adaptive plastic change, i.e., hypersensitivity; resulting from the selective pharmacological lesion of the raphe-proceeding 5-HTergic fibers to the PFC. Based on previous evidence, this could be strongly related to the abnormal expression of short-term memory.  相似文献   

3.
1. The 5-HT2 receptors subdivision into the 5-HT2A/2B/2C subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation.2. The SB-200646 (a selective 5-HT2B/2C receptor antagonist) and LY215840 (a nonselective 5-HT2/7 receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP).3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose.4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine; while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs.5. It is suggested that 5-HT2B/2C receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time.6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreased cholinergic, glutamatergic, and/or serotonergic neurotransmission.  相似文献   

4.
It has been shown that anti-cancer drug induces secretion of serotonin (5-HT) from small intestine which activates serotonin type 3 (5-HT3) receptor to cause nausea and vomiting. In general, antagonist for 5-HT3 receptor is used as anti-emetics during chemotherapy. However, we found that anti-cancer drug irinotecan itself inhibits 5-HT-gated current through the homomeric 5-HT3A and heteromeric 5-HT3AB receptor in a concentration-dependent manner. The inhibitory effect of irinotecan on 5-HT3A receptor was more potent than that on 5-HT3AB receptor. On the other hand, SN-38, a metabolite of irinotecan, had no effect on the responsiveness. Our findings suggest that irinotecan itself could have anti-emetic activities through inhibition of the 5-HT3A and 5-HT3AB receptor.  相似文献   

5.
Effects of tryptamine on tolbutamide-induced hypoglycemia were investigated in mice. Tryptamine significantly inhibited hypoglycemia elicited by tolbutamide. The inhibitory effects of tryptamine were strongly blocked by the 5-HT1 and 5-HT2 receptor antagonist methysergide and the 5-HT2 receptor antagonist ketanserin, while the 5-HT3 receptor antagonist ICS 205–930 was without effect. Tryptamine induced hyperglucagonemia in tolbutamide-treated mice, and this effect elicited by tryptamine was strongly inhibited by the 5-HT2 receptor antagonist ketanserin. These results suggest that the inhibitory effects of tryptamine on tolbutamide-induced hypoglycemia are mediated by 5-HT2 receptors and that tryptamine is involved in glucagon release.  相似文献   

6.
Although multiple roles of dopamine through D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptors are initiated primarily through stimulation or inhibition of adenylyl cyclase via Gs/olf or Gi/o, respectively, there have been many reports indicating diverse signaling mechanisms that involve alternative G protein coupling. In this study, dopamine-induced Gαq activation in rat brain membranes was investigated. Agonist-induced Gαq activation was assessed by increase in guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding to Gαq determined by [35S]GTPγS binding/immunoprecipitation assay in rat brain membranes. Dopamine-stimulated Gαq functionality was highest in cortex as compared to hippocampus or striatum. In cerebral cortical membranes, this effect was mimicked by benzazepine derivatives with agonist properties at dopamine D1-like receptors, that is, SKF83959, SKF83822, R(+)-SKF81297, R(+)-SKF38393, and SKF82958, but not by the compounds with dopamine D2-like receptor agonist properties except for aripiprazole. Against expectation, stimulatory effects were also induced by SKF83566, R(+)-SCH23390, and pergolide. The pharmacological profiling by using a series of antagonists indicated that dopamine-induced response was mediated through dopamine D1-like receptor, which was distinct from the receptor involved in 5-HT-induced response (5-HT2A receptor). Conversely, the responses induced by SKF83566, R(+)-SCH23390, and pergolide were most likely mediated by 5-HT2A receptor, but not by dopamine D1-like receptor. Caution should be paid when interpreting the experimental data, especially in behavioral pharmacological research, in which SKF83566 or R(+)-SCH23390 is used as a standard selective dopamine D1-like receptor antagonist. Also, possible clinical implications of the agonistic effects of pergolide on 5-HT2A receptor has been mentioned.  相似文献   

7.
The 5-HT3 receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT3 receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher cortical areas such as the amygdala, hippocampus, and cortex. On the subcellular level, both presynaptic and postsynaptic 5-HT3 receptors can be found. Presynaptic 5-HT3 receptors are involved in mediating or modulating neurotransmitter release. Postsynaptic 5-HT3 receptors are preferentially expressed on interneurons. In view of this specific expression pattern and of the well-established role of 5-HT as a neurotransmitter shaping development, we speculate that 5-HT3 receptors play a role in the formation and function of cortical circuits.  相似文献   

8.
Subhash  M. N.  Srinivas  B. N.  Vinod  K. Y.  Jagadeesh  S. 《Neurochemical research》1998,23(10):1321-1326
Inactivation of 5-HT1A and [3H]5-HT binding sites by N-Ethoxycarbonyl-2-ethoxy-1, 2-dihydro-quinoline (EEDQ) was studied in regions of rat brain. After exposure to EEDQ (4 mg/kg body wt.) for 7 days, it is observed that the density of 5-HT1 receptor sites was decreased by nearly 20% in both cortex and hippocampus. The decrease, however, in 5-HT1A sites was more significant (70%) in both the regions. The affinity of [3H]5-HT to 5-HT1 sites was decreased significantly in both cortex and hippocampus after exposure to EEDQ, without affecting the Kd of 5-HT1A sites. Displacement studies suggested that EEDQ has high affinity to 5-HT1 sites with a Ki of 42.9 ± 2.4 nM. After exposure neither basal nor 5-HT stimulated adenylyl cyclase activity was changed in cortex. The results of this study suggest that EEDQ decreases the density of 5-HT1 and 5-HT1A receptor sites but does not cause functional downregulation of these sites in rat brain.  相似文献   

9.
A series of quinoxalin-2-carboxamides were designed as per the pharmacophoric requirements of 5-HT3 receptor antagonists and synthesized by condensing the carboxylic group of quinoxalin-2-carboxylic acid with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and 1-hydroxybenzotriazole. The structures of the synthesized compounds were confirmed by physical and spectroscopic data. The carboxamides were evaluated for their 5-HT3 receptor antagonisms in longitudinal muscle-myenteric plexus preparation from guinea pig ileum against 5-HT3 agonist, 2-methy-5-HT. All the synthesized compounds showed 5-HT3 receptor antagonism, (4-benzylpiperazin-1-yl)(quinoxalin-2-yl)methanone was the most potent compound among this series.  相似文献   

10.
The 5-HT4 receptor (5-HT4R) belongs to the G-protein-coupled receptor (GPCR) family and is of considerable interest for the development of new drugs to treat gastrointestinal diseases and memory disorders. The 5-HT4R exists as a constitutive dimer but its molecular determinants are still unknown. Using co-immunoprecipitation and Bioluminescence Resonance Energy Transfer (BRET) techniques, we show here that 5-HT4R homodimerization but not 5-HT4R-β2 adrenergic receptor (β2AR) heterodimerization is largely decreased under reducing conditions suggesting the participation of disulfide bonds in 5-HT4R dimerization. Molecular modeling and protein docking experiments identified four cysteine (Cys) residues potentially involved in the dimer interface through intramolecular or intermolecular disulfide bonds. We show that disulfide bridges between Cys112 and Cys145 located within TM3 and TM4, respectively, are of critical importance for 5-HT4R dimer formation. Our data suggest that two disulfide bridges between two transmembrane Cys residues are involved in the dimerization interface of a GPCR.  相似文献   

11.
The effects were studied of short-term (1 week) versus long-term (2-3 weeks) fluoxetine treatment of primary cultures of mouse astrocytes, differentiated by treatment with dibutyryl cyclic AMP. From previous experiments it is known that acute treatment with fluoxetine stimulates glycogenolysis and increases free cytosolic Ca2+ concentration ([Ca2+]i]) in these cultures, whereas short-term (one week) treatment with 10 M down-regulates the effects on glycogen and [Ca2+]i, when fluoxetine administration is renewed (or when serotonin is administered). Moreover, antagonist studies have shown that these responses are evoked by activation of a 5-HT2 receptor that is different from the 5-HT2A receptor and therefore at that time tentatively were interpreted as being exerted on 5-HT2C receptors. In the present study the cultures were found by RT-PCR to express mRNA for 5-HT2A and 5-HT2B receptors, but not for the 5-HT2C receptor, identifying the 5-HT2 receptor activated by fluoxetine as the 5-HT2B receptor, the most recently cloned 5-HT2 receptor and a 5-HT receptor known to be more abundant in human, than in rodent, brain. Both short-term and long-term treatment with fluoxetine increased the specific binding of [3H]mesulergine, a ligand for all three 5-HT2 receptors. Long-term treatment with fluoxetine caused an agonist-induced up-regulation of the glycogenolytic response to renewed administration of fluoxetine, whereas short-term treatment abolished the fluoxetine-induced hydrolysis of glycogen. Thus, during a treatment period similar to that required for fluoxetine's clinical response to occur, 5-HT2B-mediated effects are initially down-regulated and subsequently up-regulated.  相似文献   

12.
Although five 5-hydroxytryptamine type 3 (5-HT3) subunits (A–E) have been cloned, knowledge on the regulation of their assembly is limited. RIC-3 has been identified as a chaperone specific for the pentameric ligand-gated nicotinic acetylcholine and 5-HT3 receptors. Therefore, we examined the impact of RIC-3 on differently composed 5-HT3 receptors with the focus on 5-HT3C, -D, and -E subunits. The influence of RIC-3 on these receptor subtypes is supported by the presence of RIC3 mRNA in tissues expressing at least one of the subunits 5-HT3C, -D, and -E. Furthermore, immunocytochemical studies on transfected mammalian cells revealed co-localization in the endoplasmic reticulum and direct interaction of RIC-3 with 5-HT3A, -C, -D, and -E. Functional and pharmacological characterization was performed using HEK293 cells expressing 5-HT3A or 5-HT3A + 5-HT3B (or -C, -D, or -E) in the presence or absence of RIC-3. Ca2+ influx analyses revealed that RIC-3 does not influence the 5-HT concentration-response relationship on 5-HT3A receptors but leads to differential increases of 5-HT-induced maximum response (Emax) on cells expressing different subunits. Increases of Emax were due to analogously enhanced Bmax values for binding of the 5-HT3 receptor antagonist [3H]GR65630. The observed enhanced cell surface expression of the tested 5-HT3 subunit combinations correlated with the increased surface expression of 5-HT3A as determined by flow cytometry. In conclusion, we showed that RIC-3 can interact with 5-HT3A, -C, -D, and -E subunits and predominantly enhances the surface expression of homomeric 5-HT3A receptors in HEK293 cells. These data implicate a possible role of RIC-3 in determining 5-HT3 receptor composition in vivo.  相似文献   

13.
Abstract: Heterogeneity of the 5-hydroxytryptamine2 (5-HT2) receptor across species has been implicated in several pharmacological and physiological studies. Although 5-HT2 receptors in the rat have been linked to increases in Phosphoinositide (PI) hydrolysis, little evidence exists to support the association of guinea pig 5-HT2 receptors with Pl hydrolysis, the second messenger generally linked with 5-HT2receptors. In the present study, we have taken a molecular and biochemical approach to determining whether species differences in brain 5-HT2 receptors exist between rat and guinea pig. First, we isolated partial cortical 5-HTa receptor cDNA clones that encompassed the third intracellular loop, a receptor area putatively important in receptor-effector coupling. The amino acid sequences deduced from the cDNA clones for rat and guinea pig brain 5-HT2 receptor were 97% homologous. However, the guinea pig 5-HT2 receptor had two tandem substitutions that disrupted a potential alpha helix in the region of the third cytoplasmic loop, which theoretically could alter the intracellular coupling of the guinea pig cortical 5-HT2 receptor. Because of these molecular differences, we examined further the pharmacological activation of the brain 5-HT2 receptor from guinea pig. 5-HT and the 5-HT2 receptor agonist α-methyl-5-HT increased PI hydrolysis in guinea pig cortical slices whereas the 5-HT1c receptor agonist 5-methyltryptamine was significantly less potent. In addition, the 5-HT2 receptor antagonists LY53857, ketanserin, and spiperone blocked 5-HT-stimulated Pl hydrolysis. These pharmacological data suggested that activation of the 5-HT2 receptor in guinea pig cortical slices was associated with PI hydrolysis. Thus, although areas of the guinea pig brain 5-HT2 receptor that influence receptor-effector coupling were different from the rat, such differences were not critical to receptor-effector coupling because, as in the rat, guinea pig brain 5-HT2 receptors were also coupled to PI hydrolysis.  相似文献   

14.
Over the last several years the use of molecular cloning technology has revealed a vast diversity among serotonin (5-HT)receptors, where by what was previously thought to be a family of three pharmacologically defined classes of 5-HT receptors is actually composed of seven distinct subfamilies designated 5-HT1–7. The 5-HT1, 5-HT2, and 5-HT5 subfamilies currently consist of five, three and two subtypes respectively while the 5-HT3,5-HT4, 5-HT6, and 5-HT7 “subfamilies” have at present one subtype each. Fourteen separate genes encode 13 receptors which fall in the superfamily of G protein-coupled receptors and one ligand-gated ion channel receptor. Our lab has contributed to the elucidation of this subtype diversity by cloning the cDNAs from both rat and human encoding the 5-HT2B receptor. This receptor subtype is equally homologous (approximately 70%) to the 5-HT2A and 5-HT2C receptors when amino acids comprising the transmembrane domains are compared and is clearly the third member of the 5-HT2 subfamily. The 5-HT2B receptor has been shown to couple to phosphoinositide hydrolysis as do the other two members of this subfamily when expressed in AV12-664 cells. Limited pharmacological analyses indicated that both rat and human 5-HT2B receptors are similar but distinguishable. With one tantalizing exception, the mRNAs for these receptors appear to be similarly distributed within rat and human. The 5-HT2B receptor mRNA is not found in rat brain, whereas in human brain it has been identified in multiple regions. This later finding suggests that the 5-HT2B receptor may be serving a unique CNS function in man that is absent in rat.  相似文献   

15.
We studied expression of the 5-HT1A receptor in cortical and limbic areas of the brain of the tree shrew. In situ hybridization with a receptor-specific probe and immunocytochemistry with various antibodies was used to identify distinct neurons expressing the receptor. In vitro receptor autoradiography with 3H-8-OH-DPAT (3H-8-hydroxy-2-[di-n-propylamino]tetralin) was performed to visualize receptor-binding sites. In the prefrontal, insular, and occipital cortex, 5-HT1A receptor mRNA was expressed in pyramidal neurons of layer 2, whereas 3H-8-OH-DPAT labeled layers 1 and 2 generating a columnar-like pattern in the prefrontal and occipital cortex. In the striate and ventral occipital cortex, receptor mRNA was present within layers 5 and 6 in pyramidal neurons and Meynert cells. Pyramid-like neurons in the claustrum and anterior olfactory nucleus also expressed the receptor. Principal neurons in hippocampal region CA1 expressed 5-HT1A receptor mRNA, and 3H-8-OH-DPAT labeled both the stratum oriens and stratum radiatum. CA3 pyramidal neurons displayed low 5-HT1A receptor expression, whereas granule neurons in the dentate gyrus revealed moderate expression of this receptor. In the amygdala, large pyramid-like neurons in the basal magnocellular nucleus strongly expressed the receptor. Immunocytochemistry with antibodies against parvalbumin, calbindin, and gamma aminobutyric acid (GABA) provided no evidence for 5-HT1A receptor expression in GABAergic neurons in cortical and limbic brain areas. Our data agree with previous findings showing that the 5-HT1A receptor mediates the modulation of glutamatergic neurons. Expression in the limbic and cortical areas suggested an involvement of 5-HT1A receptors in emotional and cognitive processes.This work was supported by the German Science Foundation (SFB 406; C4 to G.F.).  相似文献   

16.
In humans, serotonin (5-HT) has been implicated in numerous physiological and pathological processes in the peripheral auditory system. Dopamine (DA), another transmitter of the lateral olivocochlear (LOC) efferents making synapses on cochlear nerve dendrites, controls auditory nerve activation and protects the sensory nerve against overactivation. Using in vitro microvolume superfusion techniques we tested 5-HT6 and 5-HT7 receptor antagonists whether they can influence dopamine (DA) release from the guinea-pig cochlea in control and in ischemic conditions using currently available and new 5-HT6 and 5-HT7 antagonists and mixed antagonists, which were synthesized and characterized for the current study. While the 5-HT7 antagonist SB-258719 was ineffective, SB-271046, which blocks the 5-HT6 receptor, caused a significant increase in cochlear DA release what is contradictory with the excitatory nature of this type of receptor. Moreover, the mixed 5-HT6/7 antagonist EGIS-12233 induced an even more pronounced increase in the resting DA release. To understand why the block of an excitatory receptor results in an increase instead of a decrease in function, we investigated the possible involvement of an indirect neural mechanism through an inhibitory system. In the presence of the GABAA receptor blocker bicuculline, EGIS-12233 failed to increase the release of DA, suggesting that the serotonin receptor modulation of DA release from the lateral olivocochlear efferents in the cochlea was produced indirectly by decreasing the GABAergic inhibitory tone on dopaminergic nerve endings. The mixed 5-HT7/D4 receptor antagonist EGIS-11983 significantly increased both the stimulation-evoked and the resting DA release, while the selective D4 blocker L-741,741 alone had no significant effect. Ischemia, simulated by oxygen and glucose deprivation from the perfusion solution had no action on the effect of the drugs. Drugs that can increase the release of DA from LOC terminals in the cochlea may have a role in the treatment of sensorineural hearing loss.  相似文献   

17.
A model series of 5-HT2C antagonists have been prepared by rapid parallel synthesis. These N-substituted phenyl-N′-pyridin-3-yl ureas were found to have a range of 5-HT2C receptor affinities and selectivities over the closely related 5-HT2A receptor. Extrapolation of simple SAR, derived from this set of compounds, to the more active but synthetically more complex 1-(3-pyridyl-carbamoyl)indoline series allowed us to target optimal substitution patterns and identify potent and selective 5-HT2C/2B antagonists.  相似文献   

18.
The family of 5-HT4 receptors comprises 16 putative splice variants. We have previously shown that there are differences in signal transduction of the h5-HT4a and h5-HT4b receptors. In the present study, the internalization of these two splice variants following receptor stimulation was investigated with confocal microscopy on living cells. Chimeric receptors, h5-HT4a-GFP and h5-HT4b-GFP were generated by fusing the coding sequence of the 5-HT4 receptor with the coding sequence of the GFP. The agonist stimulation of fluorescent receptors resulted in a time-dependent internalization of the h5-HT4b-GFP receptor, but not of the h5-HT4a-GFP receptor. The h5-HT4b receptor displays a dual coupling to Gαi,o and Gαs proteins, in contrast to the h5-HT4a receptor, which couples to Gαs proteins only. We investigated whether the difference in internalization of the two splice variant receptors was related to their differential coupling. Therefore, we performed agonist-stimulation of the receptor following inhibition of the Gαi,o protein coupling using PTX. The h5-HT4b receptor internalization is PTX insensitive. We co-transfected the fluorescent chimeric receptors with other wild-type variants, which did not produce an alteration of the receptor trafficking. These findings provide the first evidence of differential internalization between the two splice variants, 5-HT4a and 5-HT4b receptors.  相似文献   

19.
1. The serotonin1A (5-HT1A) receptor is an important representative of G-protein coupled family of receptors. It is the most extensively studied among the serotonin receptors, and appears to be involved in various behavioral and cognitive functions.2. We report here the pharmacological and functional characterization of the human serotonin1A receptor stably expressed in HN2 cell line, which is a hybrid cell line between hippocampal cells and mouse neuroblastoma.3. Our results show that serotonin1A receptors in HN2-5-HT1AR cells display ligand-binding properties that closely mimic binding properties observed with native receptors. We further demonstrate that the differential discrimination of G-protein coupling by the specific agonist and antagonist, a hallmark of the native receptor, is maintained for the receptor in HN2-5-HT1AR cells. Importantly, the serotonin1A receptor in HN2-5-HT1AR cells shows efficient downstream signalling by reducing cellular cyclic AMP levels.4. We conclude that serotonin1A receptors expressed in HN2-5-HT1AR cells represent a useful model system to study serotonin1A receptor biology, and is a potential system for solubilization and purification of the receptor in native-like membrane environment.  相似文献   

20.
One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT3 receptor in the development of PTSD, even though 5-HT3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号