首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the effect of drug incorporation methods on the partitioning behavior of lipophilic drugs in parenteral lipid emulsions. Four lipophilic benzodiazepines, alprazolam, clonazepam, diazepam, and lorazepam, were used as model drugs. Two methods were used to incorporate drugs into an emulsion: dissolving the compound in the oil phase prior to emulsification (de novo emulsification), and directly adding a concentrated solution of drug in a solubilizer to the emulsion base (extemporaneous addition). Based on the molecular structures and determination of the oil and aqueous solubilities and the partition coefficients of the drugs, the lipophilicity was ranked as diazepam > clonazepam > lorazepam > alprazolam. Ultracentrifugation was used to separate the emulsion into four phases, the oil phase, the phospholipid-rich phase, the aqueous phase and the mesophase, and the drug content in each phase was determined. Partitioning of diazepam, which has the highest lipophilicity and oil solubility among the four drugs, was unaffected by the drug incorporation method, with both methods giving a high proportion of drug in the inner oil phase and the phospholipid-rich phase, compared to the aqueous phase and mesophase. Partitioning of the less lipophilic drugs (alprazolam, clonazepam, and lorazepam) in the phases of the emulsion system was dependent on the method of incorporation and the drug solubility properties. Emulsions of the three drugs prepared by de novo emulsification exhibited higher drug localization in the phospholipid-rich phase compared to those made by extemporaneous addition. With the latter method, the drugs tended to localize in the outer aqueous phase and mesophase, with less deposition in the phospholipid-rich phase and no partitioning into the inner oil phase.  相似文献   

2.
Cloudiness or opacity (cloudy appearance) is an important property in citrus beverages, since it enhances their juice-like appearance and gives it a natural fruit juice appeal. This property is achievable through the addition of oil-in-water emulsions known as clouding agents. These emulsions are thermodynamically unstable and tend to break down during storage. Moreover, product and legal constraints put severe limits on materials that can be used to insure emulsion stability, particularly the introduction of weighting agents into the oil phase. Weighing agents (density-adjusting agents) are lipophilic compounds with specific gravity higher than that of water and have a restricted use because of the perceived health risk disadvantage, undesirable taste, and oxidative instability. The stability of beverage emulsions is a problem of serious concern faced by the flavor and beverage industry. This paper provides an overview of research carried out by the authors on basic factors affecting the physical stability of beverage cloud emulsions having a bearing on droplet size/distribution, rheological properties of emulsion and phases components, and the stability of emulsion in concentrated and diluted forms with or without addition of weighting agents. Delivery of Functionality in Complex Food Systems: Physically-Inspired Approaches From Nanoscale To Microscale University of Massachusetts, Amherst, October 8–10, 2007  相似文献   

3.
This study aimed to check the hypothesis that aroma concentration in the aqueous phase of an oil-in-water emulsion controlled the odor intensity of single aroma compounds. A set of flavored oil-in-water emulsions, prepared according to a 22 experimental design (aroma concentration, oil volume fraction) with two central points, was assessed for odor intensity by a 24-member panel during four sessions. In each session, three of the four-studied aroma molecules (benzaldehyde, ethyl butyrate, linalool and acetophenone) were investigated. Whatever the aroma, the experimental data showed that the oil volume fraction of the emulsion (from 0.12 to 0.48) did not influence the odor intensity. For each emulsion composition, aroma concentrations at equilibrium in both phases were calculated using the oil-water partition coefficient of the compound. Odor intensities, estimated from aroma concentration in the aqueous phase using previously reported modeling of odor intensity above water solutions, were then compared to experimental data. It is confirmed that the perceived odor intensity is governed by the aroma concentration in the aqueous phase at the time of the trial and not by the averaged apparent concentration in the emulsion.  相似文献   

4.
The study was designed to build up a database for the evaluation of the self-emulsifying lipid formulations performance. A standard assessment method was constructed to evaluate the self-emulsifying efficiency of the formulations based on five parameters including excipients miscibility, spontaneity, dispersibility, homogeneity, and physical appearance. Equilibrium phase studies were conducted to investigate the phase changes of the anhydrous formulation in response to aqueous dilution. Droplet size studies were carried out to assess the influence of lipid and surfactant portions on the resulted droplet size upon aqueous dilution. Formulations containing mixed glycerides showed enhanced self-emulsification with both lipophilic and hydrophilic surfactants. Increasing the polarity of the lipid portion in the formulation leaded to progressive water solubilization capacity. In addition, formulations containing medium chain mixed glycerides and hydrophilic surfactants showed lower droplet size compared with their long chain and lipophilic counterparts. The inclusion of mixed glycerides in the lipid formulations enormously enhances the formulation efficiency.  相似文献   

5.
Co-enzyme Q10 (CoQ10), a lipophilic compound that widely used in the food and pharmaceutical products was formulated in a κ-carrageenan coated oil-in-water (O/W) emulsion. In this work, we examined the solubility of CoQ10 in different carrier oils and effects of emulsifier type on the formation and stability of CoQ10-loaded O/W emulsion. Nine vegetable oils and four types of emulsifiers were used. CoQ10 was found significantly (p?<?0.05) more soluble in medium chain oils (coconut oil and palm kernel oil) as compared to other vegetable oils. The O/W emulsions were then prepared with 10 % (w/w) coconut oil and palm kernel oil containing 200 g CoQ10/L oil stabilized by 1 % (w/v) emulsifiers (sucrose laurate (SEL), sodium stearoyl lactate (SSL), polyglycerol ester (PE), or Tween 80 (Tw 80)) in 1 % (w/v) κ-carrageenan aqueous solution. Particle size distribution and physical stability of the emulsions were monitored. The droplet sizes (surface weighted mean diameter, D[3,2]) of fresh O/W emulsion in the range of 2.79 to 5.83 μm were observed. Irrespective of the oil used, results indicated that complexes of SSL/κ-carrageenan provided the most stable CoQ10-loaded O/W emulsion with smaller and narrower particle size distribution. Both macroscopic and microscopic observations showed that O/W emulsion stabilized by SSL/κ-carrageenan is the only emulsion that exhibited no sign of coalescence, flocculation, and phase separation throughout the storage period observed.  相似文献   

6.
Crow BB  Nelson KD 《Biopolymers》2006,81(6):419-427
We have developed a novel biodegradable, polymeric fiber construct that is coextruded using a wet-spinning process into a core-sheath format with a polysaccharide pre-hydrogel solution as the core fluid and poly(L-lactic acid) (PLLA) as the sheath. The biodegradable, biocompatible fibers were extruded from polymeric emulsions comprised of solutions of various molecular weights of PLLA dissolved in chloroform and containing dispersed, protein-free aqueous phases comprising up to 10% of the emulsion volume. Biologically sensitive agents can be loaded via a dispersed aqueous phase in the polymer, and/or directly into the polysaccharide. We show that this core-sheath fiber format will load a model protein that can be delivered for extended periods in vitro. Bovine serum albumin (BSA) was loaded into the fiber core as a model protein. We have shown that the greater the volume of the protein-free aqueous phase dispersed into the polymeric continuous-phase emulsion, the greater the total release of BSA encapsulated by a core gel comprised of 1% sodium alginate solution. We conclude this fiber format provides a promising vehicle for in vivo delivery of biological molecules. Its biocompatibility and biodegradability also allow for its use as a possible substrate for tissue engineering applications.  相似文献   

7.
K Kirk  P W Kuchel 《Biochemistry》1988,27(24):8803-8810
The marked difference between the intra- and extracellular 31P NMR chemical shifts of various phosphoryl compounds when added to a red cell suspension may be largely understood in terms of the effects of hemoglobin on the 31P NMR chemical shifts. The presence of [oxy- or (carbonmonoxy)-] hemoglobin inside the red cell causes the bulk magnetic susceptibility of the cell cytoplasm to be significantly less than that of the external solution. This difference is sufficient to account for the difference in the intra- and extracellular chemical shifts of the two phosphate esters trimethyl phosphate and triethyl phosphate. However, in the case of the compounds dimethyl methylphosphonate, diethyl methylphosphonate, and trimethyl-phosphine oxide as well as the hypophosphite, phenylphosphinate, and diphenylphosphinate ions, hemoglobin exerts an additional, much larger, effect, causing the 31P NMR resonances to shift to lower frequency in a manner that cannot be accounted for in terms of magnetic susceptibility. Lysozyme is a protein structurally unrelated to hemoglobin and was shown to cause similar shifts to lower frequency of the resonances of these six compounds; this suggests that the mechanism may involve a property of proteins in general and not a specific property of hemoglobin. The effect of different solvents on the chemical shifts of the eight phosphoryl compounds provided an insight into the possible physical basis of the effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Microbubble fabrication (by use of a fine emulsion) provides a means of increasing the surface-area-to-volume (SAV) ratio of polymer materials, which is particularly useful for separations applications. Porous polydimethylsiloxane (PDMS) beads can be produced by heat-curing such an emulsion, allowing the interface between the aqueous and aliphatic phases to mold the morphology of the polymer. In the procedures described here, both polymer and crosslinker (triethoxysilane) are sonicated together in a cold-bath sonicator. Following a period of cross-linking, emulsions are added dropwise to a hot surfactant solution, allowing the aqueous phase of the emulsion to separate, and forming porous polymer beads. We demonstrate that this method can be tuned, and the SAV ratio optimized, by adjusting the electrolyte content of the aqueous phase in the emulsion. Beads produced in this way are imaged with scanning electron microscopy, and representative SAV ratios are determined using Brunauer–Emmett–Teller (BET) analysis. Considerable variability with the electrolyte identity is observed, but the general trend is consistent: there is a maximum in SAV obtained at a specific concentration, after which porosity decreases markedly.  相似文献   

9.
L J Rinkel  I Tinoco  Jr 《Nucleic acids research》1991,19(13):3695-3700
One- and two-dimensional nuclear magnetic resonance (NMR) experiments were used to study the conformation of the DNA hexadecanucleotide d(CACGTGTGTGCGTGCA) in aqueous solution. NMR spectra were recorded for the compound in D2O and in H2O/D2O (90/10) over the temperature range 1 degree C-60 degrees C. Assignments of imino proton resonances and of non-exchangeable proton resonances (except for some H4', H5' and H5" resonances) are given. The 1H-NMR spectra indicate that below about 20 degrees C, the compound exists as a single monomolecular species. Between 20 degrees C and 55 degrees C the oligonucleotide occurs as a mixture of structures in fast exchange on the NMR time scale, except for the temperature region 30 degrees - 34 degrees C, where substantial line broadening indicates intermediate exchange; above 60 degrees C the single strand predominates. The imino proton spectra, chemical shift values, and scalar coupling and NOE data reveal that the monomeric form, which is exclusively present below 20 degrees C, consists of a structure with a B-DNA double helix region of six base pairs, both ends of which are closed by hairpin loops of only two nucleotides, giving the molecule a dumbbell-like structure: [sequence: see text].  相似文献   

10.
Properties of agents that effectively entrap liquid lipids.   总被引:1,自引:0,他引:1  
A droplet of an oil-in-water emulsion of methyl linoleate in a saccharide or protein solution that contained with a surfactant, a stabilizer, or both was dehydrated by drying equipment for a single droplet that resembled a spray drier. The lipid exposed on the surface of dehydated samples was extracted and measured by gas chromatography. Gum arabic or gelatin without additives resulted in little lipid being exposed; they were good entrapping agents. Little lipid was exposed with a pullulan solution containing lecithin, sugar ester, carboxymethylcellulose, or sodium caseinate but much was exposed with a maltodextrin solution containing any of the surfactants tested. When both the surfactant lecithin and the stabilizer xanthan gum were added to the emulsion prepared in a maltodextrin solution, lipid was not detected. The results suggested that effective entrapping agents of liquid lipids cause much emulsification, stabilize the emulsion (that is, they cause the continuous phase to be very viscous), and create a dehydrated matrix of fine, dense network layers.  相似文献   

11.
Whether direct availability of organic compound solubilized in nonionic surfactant micelles (bioavailability) in a bioremediation or biotransformation process is uncertain to some extent, which is partially attributed to the difficulty by direct experimental determination. In another point of view, it should be ascribed to the fuzzy concept about the solubilization of organic compound in a nonionic surfactant micelle aqueous solution. In this mini-review, the solubilization of organic compound in surfactant micelles aqueous solution is fully discussed; especially saturated solubilization and unsaturated solubilization have been emphasized. Then the current methods for estimation of bioavailability of organic compounds solubilized in micelles are introduced, in which the possible drawbacks of each method are stressed. Finally, the conclusion that organic compound solubilized in micelles is unavailable directly by microbes has been drawn and the intensification of bioremediation or biotransformation by nonionic surfactant micelle aqueous solution is contributed to enhancement of the hydrophobic organic compounds dissolution.  相似文献   

12.
In an effort to elucidate the mechanism of chiral discrimination of cholic acid-based stationary phases, the enantiomeric recognition ability of six chiral stationary phases (CSPs), prepared from differently substituted cholic acid derivatives, was evaluated in normal phase high-performance liquid chromatography (HPLC) with a series of 1,1'-binaphthyl compounds. The influence of structural variations of analytes on retention and enantioselectivity was investigated. Particularly high values of enantioselectivity were observed for the binaphthol enantiomers on a CSP prepared from the allyl 7 alpha,12 alpha-dihydroxy-3 alpha-phenylcarbamoyloxy-5 beta-cholan-24-oate. The complexes of this chiral selector with both enantiomers of binaphthol were studied as models for the interactions responsible for the enantioseparation with the cholic acid-based stationary phases. The 1:1 stoichiometry of the complex in solution was determined by UV titration. The chiral selector dissolved in chloroform exhibited a chiral discrimination for the binaphthol in (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopies. Some aromatic proton and carbon resonances of binaphthol were clearly separated into a pair of peaks due to enantiomers in the presence of the chiral selector. Moreover, on the basis of molecular mechanics calculation, a chiral discrimination model was proposed which nicely explains the relevant chromatographic behavior of the 1,1'-binaphthyl derivatives.  相似文献   

13.
A S Xu  M B Morris  P W Kuchel 《Biochemistry》1992,31(38):9263-9268
Beryllium forms several multivalent fluoride complexes in aqueous solution; the relative concentration of each is governed by the relative concentrations of the constituent ions and pH. In 9Be NMR spectra the 9Be (spin = 3/2) and 19F (spin = 1/2) spin coupling gave rise to an overlapping resonance triplet, quartet, and quintet of BeF2, BeF3-, and BeF4(2-), respectively. The low frequency shift of the quartet (0.31 ppm) and the quintet (0.62 ppm) from the triplet correlated with an increase in the number of 19F-ions in each complex. 19F NMR spectra of the complexes showed that the spin-coupled quartet of each complex was progressively shifted to higher frequency with an increase in the number of F- ions in the complex. Using 9Be and 19F NMR, the multiple equilibrium mixture of complexes was found to shift substantially to favor the BeF3- and BeF4(2-) with a relative increase of NaF concentration. The association constants for BeF2, BeF3-, and BeF4(2-) at 25 degrees C were determined directly from the peak intensities of the spectra, and by a numerical fitting procedure for multiple spectra, and were 0.51 +/- 0.17 mM-2, 0.26 +/- 0.03 mM-1, and 1.0 x 10(-2) +/- 0.1 x 10(-2) mM-1, respectively. 19F NMR spectra of human erythrocytes to which Be2+ and F- were added showed separate resonances from the intracellular populations of the complexes and these were shifted to higher frequency from their extracellular counterparts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The stability of complexes formed by Cd2+ in hemolyzed human erythrocytes was studied by spin-echo 1H NMR spectroscopy. Changes in resonances for the carbon-bonded protons of glutathione (GSH) upon addition of the ethylenediaminetetraacetic acid complex of Cd2+ (Cd(EDTA)2-) and the appearance of resonances for Mg(EDTA)2- indicate that the Cd(EDTA)2- complex dissociates in hemolyzed erythrocytes with the formation of Cd(GSH)x and Mg(EDTA)2- complexes. A semiquantitative estimate of the overall stability constant for the complexation of Cd2+ in hemolyzed erythrocytes was obtained from spin-echo 1H NMR data. The stability constant is consistent with the majority of the Cd2+ in erythrocytes present as Cd(SG)2(2-). A conditional equilibrium constant was also determined for the complexation of Mg2+ by ligands in hemolyzed human erythrocytes.  相似文献   

15.
The thermotropic phase behavior of dioleoylphosphatidylcholine and six of its longer chain homologues was studied by differential scanning calorimetry and 31P nuclear magnetic resonance (NMR) spectroscopy. Aqueous dispersions of these compounds all exhibit a single endotherm upon heating but upon cooling exhibit at least two exotherms, both of which occur at temperatures lower than those of their heating endotherm. The single transition observed upon heating was shown by 31P NMR spectroscopy to be a net conversion from a condensed, subgel-like phase (Lc phase) to the liquid-crystalline state. Aqueous ethylene glycol dispersions of these compounds also exhibit single endotherms upon heating and cooling exotherms centered at temperatures lower than those of their corresponding heating endotherm. However, the behavior of the aqueous ethylene glycol dispersions differs with respect to their transition temperatures and enthalpies as well as the extent of "undercooling" observed, and there is some evidence of discontinuities in the cooling behavior of the odd- and even-numbered members of the homologous series. Like the aqueous dispersions, 31P NMR spectroscopy also shows that the calorimetric events observed in aqueous ethylene glycol involve net interconversions between an Lc-like phase and the liquid-crystalline state. However, the Lc phase formed in aqueous ethylene glycol dispersions exhibits a considerably broader powder pattern than that observed in water. This, together with the fact that the transition enthalpies of the aqueous ethylene glycol dispersions are considerably higher than those of the aqueous dispersions, indicates that these lipids form more ordered Lc phases in aqueous ethylene glycol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary The influence of water binding on the conformational dynamics of the cyclic decapeptide antamanide dissolved in the model lipophilic environment chloroform is investigated by NMR relaxation measurements. The water-peptide complex has a lifetime of 35 s at 250 K, which is longer than typical lifetimes of water-peptide complexes reported in aqueous solution. In addition, there is a rapid intracomplex mobility that probably involves librational motions of the bound water or water molecules hopping between different binding sites. Water binding restricts the flexibility of antamanide. The experimental findings are compared with GROMOS molecular dynamics simulations of antamanide with up to eight bound water molecules. Within the simulation time of 600 ps, no water molecule leaves the complex. Additionally, the simulations show a reduced flexibility for the complex in comparison with uncomplexed antamanide. Thus, there is a qualitative agreement between the experimental NMR results and the computer simulations.  相似文献   

17.
Triethyl phosphate, dimethyl methylphosphonate, and the hypophosphite ion all contain the phosphoryl functional group. When added to an oxygenated erythrocyte suspension, the former compound gives rise to a single 31P NMR resonance, whereas the latter compounds give rise to separate intra- and extracellular 31P NMR resonances. On the basis of experiments with intact oxygenated cell suspensions (in which the hematocrit was varied) and with oxygenated cell lysates (in which the lysate concentration was varied), it was concluded that the chemical shifts of the intra- and extracellular populations of triethyl phosphate differ as a consequence of the diamagnetic susceptibility of intracellular oxyhemoglobin but that this difference is averaged by the rapid exchange of the compound across the cell membrane. The difference in the magnetic susceptibility of the intra- and extracellular compartments contributes to the observed separation of the intra- and extracellular resonances of dimethyl methylphosphonate and hypophosphite. The magnitude of this contribution is, however, substantially less than that calculated using a simple two-compartment model and varies with the hematocrit of the suspension. Furthermore, it is insufficient to fully account for the transmembrane chemical shift differences observed for dimethyl methylphosphonate and hypophosphite. An additional effect is operating to move the intracellular resonances of these compounds to a lower chemical shift. The effect is mediated by an intracellular component, and the magnitude of the resultant chemical shift variations depends upon the chemical structure of the phosphoryl compound involved.  相似文献   

18.
The conformations of the neuropeptide galanin in water and trifluoroethanol solutions have been examined by 1H NMR spectroscopy. Analysis of two-dimensional NMR experiments enabled the assignment of virtually all the 1H resonances of galanin in trifluoroethanol solution and many of the 1H resonances in aqueous solution. Interpretation of the NMR data in structural terms suggests that in trifluoroethanol galanin is predominantly helical while in water it does not adopt a fixed conformation.  相似文献   

19.
Nuclear magnetic resonance spectroscopy has been used to determine the composition of the aqueous phase of bovine chromaffin granules. Relative concentrations of catecholamines (epinephrine plus norepinephrine), ATP and chromogranins have been measured from integrated intensities in the proton spectra using computer simulation techniques. Most or all of the catecholamines (97 +/- 8%) are present in the aqueous phase and contribute to the high resolution spectrum. The catecholamine:ATP molar ratio (4.41 +/- 0.45) determined by NMR is close to the value (4.45) derived from biochemical assay indicating that most or all of the ATP is present with catecholamine in the aqueous phase. Catecholamine:protein ratios show that approximately 45% of the soluble protein freed by lysis is not NMR visible. Intensity from this fraction does not appear under highly denaturing conditions (8 M urea) but reappears after hydrolysis. This behavior is similar to that of recently isolated soluble lipoprotein complexes. Variations in the NMR spectra associated with (1) different preparative procedures; (2) different suspension media, and (3) increasing osmolality are described. The fact that high concentrations of epinephrine and ATP (approximately 700 mM total) are dissolved in the aqueous phase implies that solution phase interactions at least partially ionic in nature are responsible for the low internal osmolality of chromaffin granules in vivo. Ordered phases containing a substantial fraction of the total catecholamine in an osmotically inactive form are not present.  相似文献   

20.
Nuclear magnetic resonance spectroscopy has been used to determine the composition of the aqueous phase of bovine chromaffin granules. Relative concentrations of catecholamines (epinephrine plus norepinephrine), ATP and chromogranins have been measured from integrated intensities in the proton spectra using computer simulation techniques. Most or all of the catecholamines (97 ± 8%) are present in the aqueous phase and contribute to the high resolution spectrum. The catecholamine: ATP molar ratio (4.41 ± 0.45) determined by NMR is close to the value (4.45) derived from biochemical assay indicating that most or all of the ATP is present with catecholamine in the aqueous phase. Catecholamine: protein ratios show that approximately 45% of the soluble protein freed by lysis is not NMR visible. Intensity from this fraction does not appear under highly denaturing conditions (8 M urea) but reappears after hydrolysis. This behavior is similar to that of recently isolated soluble lipoprotein complexes. Variations in the NMR spectra associated with (1) different preparative procedures; (2) different suspension media, and (3) increasing osmolality are described. The fact that high concentrations of epinephrine and ATP (approximately 700 mM total) are dissolved in the aqueous phase implies that solution phase interactions at least partially ionic in nature are responsible for the low internal osmolality of chromaffin granules in vivo. Ordered phases containing a substantial fraction of the total catecholamine in an osmotically inactive form are not present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号