首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

Lotus is a diploid plant with agricultural, medicinal, and ecological significance. Genetic linkage maps are fundamental resources for genome and genetic study, and also provide molecular markers for breeding in agriculturally important species. Genotyping by sequencing revolutionized genetic mapping, the restriction-site associated DNA sequencing (RADseq) allowed rapid discovery of thousands of SNPs markers, and a crucial aspect of the sequence based mapping strategy is the reference sequences used for marker identification.

Results

We assessed the effectiveness of linkage mapping using three types of references for scoring markers: the unmasked genome, repeat masked genome, and gene models. Overall, the repeat masked genome produced the optimal genetic maps. A high-density genetic map of American lotus was constructed using an F1 population derived from a cross between Nelumbo nucifera ‘China Antique’ and N. lutea ‘AL1’. A total of 4,098 RADseq markers were used to construct the American lotus ‘AL1’ genetic map, and 147 markers were used to construct the Chinese lotus ‘China Antique’ genetic map. The American lotus map has 9 linkage groups, and spans 494.3 cM, with an average distance of 0.7 cM between adjacent markers. The American lotus map was used to anchor scaffold sequences in the N. nucifera ‘China Antique’ draft genome. 3,603 RADseq markers anchored 234 individual scaffold sequences into 9 megascaffolds spanning 67% of the 804 Mb draft genome.

Conclusions

Among the unmasked genome, repeat masked genome and gene models, the optimal reference sequences to call RADseq markers for map construction is repeat masked genome. This high density genetic map is a valuable resource for genomic research and crop improvement in lotus.  相似文献   

3.

Key message

Probabilistic graphical models show great potential for robust and reliable construction of linkage maps. We show how to use probabilistic graphical models to construct high-quality linkage maps in the face of data perturbations caused by genotyping errors and reciprocal translocations.

Abstract

It has been shown that linkage map construction can be hampered by the presence of genotyping errors and chromosomal rearrangements such as inversions and translocations. Here, we report a novel method for linkage map construction using probabilistic graphical models. The method is proven, both theoretically and practically, to be effective in filtering out markers that contain genotyping errors. In particular, it carries out marker filtering and ordering simultaneously, and is therefore superior to the standard post hoc filtering using nearest-neighbour stress. Furthermore, we demonstrate empirically that the proposed method offers a promising solution to linkage map construction in the case of a reciprocal translocation.
  相似文献   

4.
玉米SSR连锁图谱构建及叶面积的QTL定位   总被引:4,自引:0,他引:4  
刘建超  褚群  蔡红光  米国华  陈范骏 《遗传》2010,32(6):625-631
叶片是玉米进行光合作用的主要器官,叶面积的大小(尤其是穗三叶面积)对于玉米干物质的积累及产量形成起着至关重要的作用。研究玉米叶面积的遗传基础对于指导玉米高产育种具有理论意义。文章以两个叶面积差异显著的亲本478×武312为基础材料所构建的218个F8代的重组自交系为作图群体,构建了一张包含184个SSR标记的遗传连锁图谱,图谱总长度为2084.1cM,平均图距为11.3cM。通过两年的田间试验对玉米叶面积(穗三叶)进行了QTL定位分析。两年共定位到7个和叶面积相关的QTL位点,2006年定位到4个QTL位点;2007年定位到3个QTL位点。在第2染色体umc1542-umc1518标记区间发现一个主效QTL位点,该位点可以在两年同时检测到,两年分别解释12.5%和17.3%的表型变异。该位点能稳定地检测到且具有较大的贡献率,可能会在玉米叶面积分子标记辅助选择上有所应用。  相似文献   

5.
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops with high seed oil quality. The first sesame genetic linkage map based on F2 segregating population of an intraspecific cross between two cultivars was constructed. Using three types of PCR-based markers, 284 polymorphic loci including 10 EST-SSR marker, 30 AFLP marker and 244 RSAMPL marker, respectively, had been screened. Subsequently, a total of 220 molecular markers were mapped in 30 linkage groups covering a genetic length of 936.72 cM, and the average distance between markers was 4.93 cM. In this map, the linkage groups contained from 2 to 33 loci each and ranged in distance from 6.44 cM to 74.52 cM. Based on map information, sesame genome length was estimated to be approximately 1,232.53 cM, and genome coverage of this map was about 76.0%. As a starting point of sesame genome study, the genetic linkage map will be hopeful to tag traits of breeding interest and further aid in the sesame molecular breeding. Furthermore, RSAMPL marker had been also appreciated in this paper, for its first usage in genetic map construction and higher utilization potential in some crop species lacking much genome information.  相似文献   

6.
TetraploidMap: construction of a linkage map in autotetraploid species   总被引:2,自引:0,他引:2  
TetraploidMap is a suite of Fortran 90 routines run from Microsoft Windows with a text-based input and output. TetraploidMap enables the user to assemble a linkage map from dominant and codominant (multiallelic) marker loci scored for the parents and full-sib progeny of a cross in an autotetraploid species. It includes routines for the inference of the parental genotypes, identification of linkage groups, two-point analysis to estimate the recombination frequency and LOD score between all pairs of marker in a linkage group, and locus ordering by simulated annealing.  相似文献   

7.
An earlier program, TetraploidMap, enabled linkage analysis to be performed for autotetraploid species, with a text-based input and output. The current program, TetraploidMap for Windows, is considerably enhanced, and now goes beyond linkage analysis to perform quantitative trait locus (QTL) interval mapping, with a range of models and thresholds assessed by permutation tests. A Windows-based interface facilitates data entry and exploration. TetraploidMap for Windows is freely available from the Web site of Bioinformatics and Statistics Scotland at http://www.bioss.ac.uk/ (user-friendly software).  相似文献   

8.
Development of SSR markers and construction of a linkage map in jute   总被引:1,自引:0,他引:1  
Jute is an important natural fibre crop, which is only second to cotton in its importance at the global level. It is mostly grown in Indian subcontinent and has been recently used for the development of genomics resources.We recently initiated a programme to develop simple sequence repeat markers and reported a set of 2469 SSR that were developed using four SSR-enriched libraries (Mir et al. 2009). In this communication, we report an additional set of 607 novel SSR in 393 SSR containing sequences. However, primers could be designed for only 417 potentially useful SSR. Polymorphism survey was carried out for 374 primer pairs using two parental genotypes (JRO 524 and PPO4) of a mapping population developed for fibre fineness; only 66 SSR were polymorphic. Owing to a low level of polymorphism between the parental genotypes and a high degree of segregation distortion in recombinant inbred lines, genotypic data of only 53 polymorphic SSR on the mapping population consisting of 120 RIL could be used for the construction of a linkage map; 36 SSR loci were mapped on six linkage groups that covered a total genetic distance of 784.3 cM. Hopefully, this map will be enriched with more SSR loci in future and will prove useful for identification of quantitative trait loci/genes for molecular breeding involving improvement of fibre fineness and other related traits in jute.  相似文献   

9.
Wu  Di  Koch  Jennifer  Coggeshall  Mark  Carlson  John 《Plant molecular biology》2019,99(3):251-264
Plant Molecular Biology - The genetic linkage map for green ash (Fraxinus pennsylvanica) contains 1201 DNA markers in 23 linkage groups spanning 2008.87cM. The green ash map shows stronger synteny...  相似文献   

10.

Background and Aims

Catharanthus roseus is a plant of great medicinal importance, yet inadequate knowledge of its genome structure and the unavailability of genomic resources have been major impediments in the development of improved varieties. The aims of this study were to develop co-dominant sequence-tagged microsatellite sites (STMS) and gene-targeted markers (GTMs) and utilize them for the construction of a framework intraspecific linkage map of C. roseus.

Methods

For simple sequence repeat (SSR) isolation, a genomic library enriched for (GA)n repeats was constructed from C. roseus ‘Nirmal’ (CrN1). In addition, GTMs were also designed from 12 genes of the TIA (terpenoid indole alkaloid) pathway – the medicinally most significant pathway in C. roseus. An F2 mapping population was also generated by crossing two diverse accessions of C. roseus CrN1 (Nirmal)×CrN82 (Kew).

Key Results

A new set of 314 STMS markers and 64 GTMs were developed in this study. A segregating F2 mapping population consisting of 111 F2 individuals was generated. For generating the linkage map, a set of 423 co-dominant markers (378 newly developed and 45 published earlier) were screened for polymorphism between the parental genotypes, of which 134 were identified to be polymorphic. A total of 114 markers were mapped on eight linkage groups that spanned a 632·7 cM region of the genome with an average marker distance of 5·55 cM. Further, the mechanism of hypervariability at the gene-targeted loci was investigated at the sequence level.

Conclusions

For the first time, a large array of STMS markers and GTMs was generated in the model medicinal plant C. roseus. Moreover, the first microsatellite marker-based linkage map was described in this study. Together, these will serve as a foundation for future genomics studies related to quantitative trait loci analysis and molecular breeding in C. roseus.  相似文献   

11.
A microsatellite genetic linkage map for Xiphophorus   总被引:3,自引:0,他引:3  
Interspecies hybrids between distinct species of the genus Xiphophorus are often used in varied research investigations to identify genomic regions associated with the inheritance of complex traits. There are 24 described Xiphophorus species and a greater number of pedigreed strains; thus, the number of potential interspecies hybrid cross combinations is quite large. Previously, select Xiphophorus experimental crosses have been shown to exhibit differing characteristics between parental species and among the hybrid fishes derived from crossing them, such as widely differing susceptibilities to chemical or physical agents. For instance, genomic regions harboring tumor suppressor and oncogenes have been identified via linkage association of these loci with a small set of established genetic markers. The power of this experimental strategy is related to the number of genetic markers available in the Xiphophorus interspecies cross of interest. Thus, we have undertaken the task of expanding the suite of easily scored markers by characterization of Xiphophorus microsatellite sequences. Using a cross between Xiphophorus maculatus and X. andersi, we report a linkage map predominantly composed of microsatellite markers. All 24 acrocentric chromosome sets of Xiphophorus are represented in the assembled linkage map with an average intergenomic distance of 7.5 cM. Since both male and female F1 hybrids were used to produce backcross progeny, these recombination rates were compared between "male" and "female" maps. Although several genomic regions exhibit differences in map length, male- and female-derived maps are similar. Thus Xiphophorus, in contrast to zebrafish, Danio rerio, and several other vertebrate species, does not show sex-specific differences in recombination. The microsatellite markers we report can be easily adapted to any Xiphophorus interspecies and some intraspecies crosses, and thus provide a means to directly compare results derived from independent experiments.  相似文献   

12.
A computer algorithm is presented which allows selection of a subset of multiplex markers based on the minimisation of an optimality criterion for a genetic linkage map. It could be applied for choosing a subset of primers (e.g. RAPD, IMA or AFLP), each of which provides several unevenly spaced genetic markers. The goal is to achieve a saturated map of evenly spaced markers, using as few primers as possible to minimise cost and labour. Minimising the average map distance between markers is trivial, but simply leads to selection of those primers which provide the greatest number of markers. However, minimising the standard deviation of interval length ensures that weight is given both to the number of markers and to the evenness of their distribution on the linkage map. This criterion was found empirically to give a result fairly close to the optimum. A stepwise-like selection procedure is therefore implemented, which stops when the optimality criterion does not decrease any more. An example is given of a molecular map of perennial ryegrass with 463 markers obtained from 17 AFLP primers. It is demonstrated that this can be safely reduced to a 175 marker map with only 6 primers. Genetic diversity studies may also benefit from using such a subset of less-redundant markers in genetic distance estimation. Received: 17 March 1999 / Accepted: 23 August 1999  相似文献   

13.
A linkage map of rye   总被引:4,自引:0,他引:4  
A linkage map of rye (Secale cereale L.) is presented which comprises 60 loci including RFLPs, RAPDs, isozyme, morphological and physiological markers. The genetics and linkage relationships of these markers were investigated in several inbred lines of rye. For the RFLP mapping a genomic library of PstI-digested DNA was constructed from which 50 size-selected clones were analysed. The portion of single-copy and multi-copy DNA and the frequency of polymorphic DNA was determined. The markers are unequally distributed over the seven chromosomes of rye. Many of them exhibit a distorted segregation. The main region of deviating segregation ratios could be localized near the self-incompatibility loci.  相似文献   

14.
15.
Mei, Prunus mume Sieb. et Zucc., is an ornamental plant popular in East Asia and, as an important member of genus Prunus, has played a pivotal role in systematic studies of the Rosaceae. However, the genetic architecture of botanical traits in this species remains elusive. This paper represents the first genome-wide mapping study of quantitative trait loci (QTLs) that affect stem growth and form, leaf morphology and leaf anatomy in an intraspecific cross derived from two different mei cultivars. Genetic mapping based on a high-density linkage map constricted from 120 SSRs and 1,484 SNPs led to the detection of multiple QTLs for each trait, some of which exert pleiotropic effects on correlative traits. Each QTL explains 3-12% of the phenotypic variance. Several leaf size traits were found to share common QTLs, whereas growth-related traits and plant form traits might be controlled by a different set of QTLs. Our findings provide unique insights into the genetic control of tree growth and architecture in mei and help to develop an efficient breeding program for selecting superior mei cultivars.  相似文献   

16.
虾夷扇贝遗传连锁图谱的初步构建   总被引:9,自引:0,他引:9  
用AFLP标记首次构建了虾夷扇贝遗传连锁图谱。用56对引物组合对父母本和52个F1代个体进行遗传连锁分析, 共得到1 855个标记, 其中多态位点为598(32.2%)个, 而354个符合孟德尔1: 1分离比。用这些标记和23个偏分离标记(0.01相似文献   

17.
Dynamic programming algorithms for restriction map comparison   总被引:1,自引:0,他引:1  
For most sequence comparison problems there is a correspondingmap comparison algorithm. While map data may appear to be incompatiblewith dynamic programming, we show in this paper that the rigorand efficiency of dynamic programming algorithms carry overto the map comparison algorithms. We present algorithms forrestriction map comparison that deal with two types of map errors:(i) closely spaced sites for different enzymes can be orderedincorrectly, and (ii) closely spaced sites for the same enzymecan be mapped as a single site. The new algorithms are a naturalextension of a previous map comparison model. Dynamic programmingalgorithms for computing optimal global and local alignmentsunder the new model are described. The new algorithms take aboutthe same order of time as previous map comparison algorithms.Programs implementing some of the new algorithms are used tofind similar regions within the Escherichia coli restrictionmap of Kohara et al.  相似文献   

18.
Using a High Efficiency Genome Scanning (HEGS) system and recombinant inbred (RI) lines derived from the cross of Russia 6 and H.E.S. 4, a high-density genetic map was constructed in barley. The resulting 1,595.7-cM map encompassed 1,172 loci distributed on the seven linkage groups comprising 1,134 AFLP, 34 SSR, three STS and vrs1 (kernel row type) loci. Including PCR reactions, gel electrophoresis and data processing, 6 months of work by a single person was sufficient for the whole mapping procedure under a reasonable cost. To make an appraisal of the resolution of genetic analysis for the 95 RI lines based on the constructed linkage map, we measured three agronomic traits: plant height, spike exsertion length and 1,000-kernel weight, and the analyzed quantitative trait loci (QTLs) associated with these traits. The results were compared on the number of detected QTLs and their effects between a high-density map and a skeleton map constructed by selected AFLP and anchor markers. The composite interval mapping on the high-density map detected more QTLs than the other analyses. Closely linked markers with QTLs on the high-density map could be powerful tools for marker-assisted selection in barley breeding programs and further genetic analyses including an advanced backcross analysis or a map-based cloning of QTL. Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.S. Heslop-Harrison  相似文献   

19.
A consensus linkage map for swine chromosome 7   总被引:1,自引:0,他引:1  
The First International Workshop on Swine Chromosome 7 (SSC7) was held in Minnesuing, Wisconsin, USA on 21–24 September 1995. The objective was to develop a comprehensive linkage map for porcine chromosome 7 by combining genotypic data from four swine reference populations. Contributions of genotypic data were made from the US Meat Animal Research Center, the University of Minnesota, the PiGMaP consortium and the Scandinavian consortium. Primers for selected sequence tagged site markers, to be genotyped across the reference populations, were exchanged to integrate individual maps of SSC7. Eighty-six loci were genotyped; these loci represented microsatellite, minisatellite, single-strand conformation polymorphism, restriction fragment length polymorphism, erythrocyte antigen and protein polymorphisms. Eighteen genes were mapped, including 12 markers within class I, class II and class III regions (four markers in each class) of the swine major histocompatibility complex. Forty-two markers were either genotyped on more than one population or were included in a haplotype system and used to develop skeletal linkage maps that spanned 147·6, 212·7 and 179·5 cM for the male, female and sex-average maps, respectively. A comprehensive linkage map was developed incorporating those markers with more than 30 informative meioses. The comprehensive map was slightly longer than the skeletal map, at 153·3, 215·3 and 183·8 cM, respectively, with only three intervals greater than 10 cM. These results significantly improve the genetic resolution of the porcine chromosome 7 map and represent an accurate approach for the merging of genetic maps produced in different reference populations.  相似文献   

20.
Summary A restriction fragment length polymorphism (RFLP)-based linkage map for common bean (Phaseolus vulgaris L.) covering 827 centiMorgans (cM) was developed based on a F2 mapping population derived from a cross between BAT93 and Jalo EEP558. The parental genotypes were chosen because they exhibited differences in evolutionary origin, allozymes, phaseolin type, and for several agronomic traits. The segregation of 152 markers was analyzed, including 115 RFLP loci, 7 isozyme loci, 8 random amplified polymorphic DNA (RAPD) marker loci, and 19 loci corresponding to 15 clones of known genes, 1 virus resistance gene, 1 flower color gene, and 1 seed color pattern gene. Using MAPMAKER and LINKAGE-1, we were able to assign 143 markers to 15 linkage groups, whereas 9 markers remained unassigned. The average interval between markers was 6.5 cM; only one interval was larger than 30 cM. A small fraction (9%) of the markers deviated significantly from the expected Mendelian ratios (121 or 31) and mapped into four clusters. Probes of known genes belonged to three categories: seed proteins, pathogen response genes, and Rhizobium response genes. Within each category, sequences homologous to the various probes were unlinked. The I gene for bean common mosaic virus resistance is the first disease resistance gene to be located on the common bean genetic linkage map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号