首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolism of small RNAs in cultured human cells   总被引:2,自引:0,他引:2  
  相似文献   

2.
Precursors of U4 small nuclear RNA   总被引:16,自引:1,他引:15       下载免费PDF全文
《The Journal of cell biology》1984,99(3):1140-1144
The processing and ribonucleoprotein assembly of U4 small nuclear RNA has been investigated in HeLa cells. After a 45-min pulse label with [3H]uridine, a set of apparently cytoplasmic RNAs was observed migrating just behind the gel electrophoretic position of mature U4 RNA. These molecules were estimated to be one to at least seven nucleotides longer than mature U4 RNA. They reacted with Sm autoimmune patient sera and a monoclonal Sm antibody, indicating their association with proteins characteristic of small nuclear ribonucleoprotein complexes. The same set of RNAs was identified by hybrid selection of pulse-labeled RNA with cloned U4 DNA, confirming that these are U4 RNA sequences. No larger nuclear precursors of these RNAs were detected. Pulse-chase experiments revealed a progressive decrease in the radioactivity of the U4 precursor RNAs coincident with an accumulation of labeled mature U4 RNA, confirming a precursor-product relationship.  相似文献   

3.
It was demonstrated previously that the synthesis of small nuclear RNA (snRNA) species U1 and U2 in human cells is very sensitive to UV radiation. In the present work, the UV sensitivity of U3, U4, and U5 snRNA synthesis is shown to be also high. The synthesis of U1, U2, U3, U4, and U5 snRNAs progressively decreased during the first 2 h after UV irradiation (this was not observed in polyadenylated RNA) and had not returned to normal rates 6 h after UV exposure. In contrast, the restoration of 5.8S rRNA synthesis began immediately after UV irradiation and was essentially complete 6 h later. A small fraction of U1 and U5 (and possibly U2 and U3) snRNA synthesis remained unaffected by high UV doses, when cell radiolabeling began 10 min after UV irradiation. The present data suggest that a factor other than the level of pyrimidine dimers in DNA (possibly, steps in the post-irradiation DNA repair process) plays an important role in the mechanism of UV-induced inhibition of U1-U5 snRNA synthesis.  相似文献   

4.
BRL-3A rat liver cells synthesize mature 7484-dalton rat insulin-like growth factor II (rIGF-II) as a approximately 22-kDa precursor, presumably prepro-rIGF-II. In the present study, we have biosynthetically labeled intact BRL-3A cells with [35S]cysteine and immunoprecipitated cell lysates and media with antisera to rIGF-II. A approximately 20-kDa protein was identified in immunoprecipitates of cell lysates having properties consistent with pro-rIGF-II. The approximately 20-kDa protein is precipitated by immune sera but not by nonimmune serum. Its immunoprecipitation is specifically inhibited by unlabeled rIGF-II but not by insulin. It is not precipitated from labeled lysates of a subclone of BRL-3A cells (BRL-3A2) that does not synthesize rIGF-II. The approximately 20-kDa protein is rapidly labeled intracellularly (10 min) but is not detected in BRL-3A media. In pulse-chase experiments, radioactivity in the approximately 20-kDa protein disappears during the chase and appears, at later times, in specifically immunoprecipitated approximately 19-, approximately 10-, approximately 8-, and approximately 7-kDa proteins in media and, to a limited extent, intracellularly. A protein with electrophoretic mobility identical to that of the approximately 20-kDa protein observed in cell lysates is immunoprecipitated from 35S-proteins whose synthesis is directed by BRL-3A RNA in a reticulocyte lysate cell-free translation system supplemented with microsomal membranes, and presumably arises by cotranslational removal of the signal peptide from approximately 22-kDa prepro-rIGF-II. Processing of the approximately 20-kDa protein in intact BRL-3A cells to intermediate and mature rIGF-II species appears to occur at the time of secretion and/or shortly thereafter, with the different forms appearing at approximately the same time.  相似文献   

5.
During vegetative growth of the cellular slime mold Dictyostelium discoideum, RNA is rapidly labeled by radioactive precursor and both the 25 S and the 17 S ribosomal RNA species appear in the cytoplasm 6–7 min after the onset of labeling. Thirty minutes after further incorporation of radioactive RNA precursors has been blocked, less than 10% of the label in RNA is associated with the nuclear fraction. After aggregation of the slime mold amoebae, RNA appears in the cytoplasm at a reduced rate, the small ribosomal subunit appearing in the cytoplasmic fraction more slowly than the larger ribosomal subunit. Some labeled RNA remains in the nuclei of developing cells long after the incorporation of 3H-uridine is blocked.  相似文献   

6.
An attempt is made to characterize the rapidly labeled hybridizable RNA of L5178Y mouse leukemic cells which has been shown to have similar base sequences when synthesized in two different stages of the cell cycle. The size of rapidly labeled RNA molecules was heterogeneous. For labeling times of 20 min or less, the per cent of hybridization was maximal. With longer labeling times, the per cent of hybridization decreased as radioactivity appeared in long-lived species of low hybridization efficiency; the radioactivity profile resembled the optical density profile in sucrose gradients. The lifetime of newly synthesized hybridizable RNA was studied by pulse labeling exponentially growing cells and then “chasing” with nonradioactive uridine. The per cent of hybridization was studied as a function of chase time. Three RNA groups, which comprised different proportions of rapidly labeled hybridizable RNA, were distinguished. The short-lived group had a half-life of 10 min, much less than the values reported in the literature for messenger RNA of mammalian cells. The half-life of 1-1½ hr observed for a medium-lived group more closely corresponds to that of messenger RNA. A long-lived group had a half-life of approximately 20 hr. Specific activity measurements during chase indicate the presence of a “pool” of labeled uridine derivatives. The uridine of this pool appears to be nonexchangeable with but dilutable by exogenous uridine. A nontoxic concentration of actinomycin D was added to the chase media in an attempt to block the “pool effect”. A rapidly degradable RNA was demonstrable both by specific activity and per cent of hybridization measurements.  相似文献   

7.
By pretreating simian virus 40-infected BSC-1 cells with glucosamine, [(3)H]uridine labeling of both cellular and viral RNA can be halted instantaneously by addition of cold uridine. We have studied the fate of pulse-labeled viral RNA from cells at 45 h postinfection under these conditions. During a 5-min period of labeling, both the messenger and nonmessenger regions of the late strand were transcribed. After various chase periods, nuclear viral species which sediment at 19, 17.5, and 16S were observed. Nuclear viral RNA decays in a multiphasic manner. Of the material present at the beginning of the chase period, 50% was degraded rapidly with a half-life of 8 min (initial processing). This rapidly degraded material was that fraction of the late strand which did not give rise to stable late mRNA species. Forty percent was transported to the cytoplasm, and 10% remained in the nucleus as material which sedimented in the 2 to 4S region. These 2 to 4S viral RNAs had a half-life of 3 h, and hybridization studies suggest that they are in part coded for by the late-strand nonmessenger region and are derived from the initial nuclear processing step. Another part is coded for by the late-strand messenger region and may be generated by some subsequent nuclear cleavages of 19S RNA into 17.5 and 16S RNAs. Transport of nuclear viral RNA into the cytoplasm was detected after a 5-min pulse and a 7-min chase. The maximum amount of labeled viral RNA was accumulated in the cytoplasm after a 30-min to 1-h chase. At least two viral cytoplasmic species were observed. Kinetic data suggest that 19S RNA is transported directly from the nucleus. Whether cytoplasmic 16S is formed by cleavage of 19S RNA in the cytoplasm is not clear. The half-lives of cytoplasmic 19 and 16S RNAs can be approximated as 2 and 5 h, respectively.  相似文献   

8.
Hydrophobic envelope proteins were extracted by phenol from a glucosamine- and leucine-requiring mutant of Escherichia coli K-12 (E-110). Three protein fractions labelled with D-[1-1 4C]glucosamine and L-[4,5-3H]leucine were obtained by electrophoretic separation. Envelope were isolated from cells labeleed with D-[1-1 4C]glucosamine—HCL and acid hydrolyzed. At least 68% of the radioactivity was recovered as glucosamine and glucose with no random distribution of label. Fingerprinting of pronase digests of glucosamine-labelled proteins showed four radioactive spots associated with peptides. Te glycoproteins were pronase- and trypsin-sensitive and had apparent molecular weights of 11 000 (fast mobility), 35 000 (intermediate mobility) and 62 000 (slow mobility) as estimated by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. The two heavier fractions were labelled with meso-diamino[1,7-1 4C2]pimelic acid, while ortho[3 2P]phosphate was not incorporated into any fraction. The glucosamine radioactivity of the fast fraction underwent rapid changes upon a chase with non-radioactive glucosamine. Using a Sephadex LH-20 column, the radioactive proteins were separated from the phenol and subsequently fractionated on a DEAS-cellulose column. The DEAE-cellulose fractions were distinct from each other in the number and composition of protein bands, when analyzed by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. Radioactive bands with intermediate and fast electrophoretic mobilities were found in separate DEAE-cellulose fractions.  相似文献   

9.
Hydrophobic envelope proteins were extracted by phenol from a glucosamine- and leucine-requiring mutant of Escherichia coli K-12 (E-110). Three protein fractions labelled with D-[1-1 4C]glucosamine and L-[4,5-3H]leucine were obtained by electrophoretic separation. Envelope were isolated from cells labeleed with D-[1-1 4C]glucosamine—HCL and acid hydrolyzed. At least 68% of the radioactivity was recovered as glucosamine and glucose with no random distribution of label. Fingerprinting of pronase digests of glucosamine-labelled proteins showed four radioactive spots associated with peptides. Te glycoproteins were pronase- and trypsin-sensitive and had apparent molecular weights of 11 000 (fast mobility), 35 000 (intermediate mobility) and 62 000 (slow mobility) as estimated by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. The two heavier fractions were labelled with meso-diamino[1,7-1 4C2]pimelic acid, while ortho[3 2P]phosphate was not incorporated into any fraction. The glucosamine radioactivity of the fast fraction underwent rapid changes upon a chase with non-radioactive glucosamine. Using a Sephadex LH-20 column, the radioactive proteins were separated from the phenol and subsequently fractionated on a DEAS-cellulose column. The DEAE-cellulose fractions were distinct from each other in the number and composition of protein bands, when analyzed by sodium dodecyl sulfate-polyacrylamide disc electrophoresis. Radioactive bands with intermediate and fast electrophoretic mobilities were found in separate DEAE-cellulose fractions.  相似文献   

10.
A ribonucleoprotein complex whose RNA complement consists exclusively of small nuclear RNA species (snRNA) has been purified from particles containing heterogenous nuclear RNA (hnRNP) from HeLa cells. This was accomplished by taking advantage of their ability to band at a density of about 1.43 g/cm3 in plain cesium chloride as well as in cesium chloride gradients containing 0.5% sarkosyl without prior aldehyde fixation. After these two steps of equilibrium density centrifugation, these snRNPs were still largely contaminated by free proteins (and especially phosphoproteins). A final step of purification by velocity sedimentation in a sucrose gradient containing 0.5 M cesium chloride and 0.5% sarkosyl was efficient in completely eliminating all free proteins. U1, U2, U4, U5 and U6 species according to the nomenclature of Lerner et al. (Nature, (1980) 283, 220-224) were found in these purified snRNPs, while a significant part of U6 and a small amount of U2 were found in the bottom fraction. 5S species behaved entirely as free RNA and is presumably a contaminant of cytoplasmic origin. Electrophoresis of proteins from snRNP labeled in vivo with (35S) methionine, revealed four bands with migrations corresponding to molecular weights ranging between 10,000 and 14,000 daltons.  相似文献   

11.
B M Gallagher  W J Hartig 《In vitro》1976,12(3):165-172
The utilization of [3H]-5-uridine by CP-1268 cells was studied. Uridine was rapidly transported into these cells by a concentration dependent, saturable process. Exogenous uridine rapidly equilibrated with cellular nucleotide pools and virtually all of the uridine transported into the cells was phosphorylated. Uridine incorporation into RNA was studied by continuous and pulse-labeling techniques in the prescence or absence of actinomycin D and cordycepin. These studies have shown that the pattern of unstable RNA precursor and relatively stable RNA product relationship known to exist in mammalian cells similarly exists in insect cells in vitro. This pattern varied markedly with pulse-labeling time and required the addition of RNA inhibitors to block reincorporation of intracellular labeled metabolites during the chase.  相似文献   

12.
Summary The utilization of [3H]-5-uridine by CP-1268 cells was studied. Uridine was rapidly transported into these cells by a concentration dependent, saturable process. Exogenous uridine rapidly equilibrated with cellular nucleotide pools and virtually all of the uridine transported into the cells was phosphorylated. Uridine incorporation into RNA was studied by continuous and pulse-labeling techniques in the presence or absence of actinomycin D and cordycepin. These studies have shown that the pattern of unstable RNA precursor and relatively stable RNA product relationship known to exist in mammalian cells similarly exists in insect cells in vitro. This pattern varied markedly with pulse-labeling time and required the addition of RNA inhibitors to block reincorporation of intracellular labeled metabolites during the chase.  相似文献   

13.
Association of protein C23 with rapidly labeled nucleolar RNA   总被引:21,自引:0,他引:21  
A H Herrera  M O Olson 《Biochemistry》1986,25(20):6258-6264
The association of nucleolar phosphoprotein C23 with preribosomal ribonucleoprotein (RNP) particles was examined in Novikoff hepatoma nucleoli. RNA was labeled with [3H]uridine for various times in cell suspensions, and RNP particles were extracted from isolated nucleoli and fractionated by sucrose gradient ultracentrifugation. The majority of protein C23 cosedimented with fractions containing rapidly labeled RNA (RL fraction). To determine whether there was a direct association of RNA with protein C23, the RL fraction was exposed to ultraviolet (UV) light (254 nm) for short periods of time. After 2 min of exposure there was a 50% decrease in C23 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses, with no significant further decrease at longer times. When UV-treated fractions were subjected to phenol/chloroform extractions, as much as 30% of the labeled RNA was found in the phenol (protein) layer, indicating that RNA became cross-linked to protein. Similarly, there was an increase in protein C23 extracted into the water layer after irradiation. By SDS-PAGE analyses the cross-linked species migrated more slowly than protein C23, appearing as a smear detected either by [3H]uridine radioactivity or by anti-C23 antibody. With anti-C23 antibodies, up to 25% of the labeled RNA was precipitated from the RL fraction. Dot-blot hybridizations, using cloned rDNA fragments as probes, indicated that the RNA in the RL fraction and the immunoprecipitated RNA contained sequences from 18S and 28S ribosomal RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In an effort to understand the regulation of the transition of a mature neuron to the growth, or regenerating, state we have analyzed the composition of the axonally transported proteins in the retinal ganglion cells of the toad Bufo marinus after inducing axon regeneration by crushing the optic nerve. At increasing intervals after axotomy, we labeled the retinal ganglion cells with [35S]methionine and subsequently analyzed the labeled transported polypeptides in the crushed optic nerve by means of one- and two-dimensional electrophoretic techniques. The most significant conclusion from these experiments is that, while the transition from the mature to the regenerating state does not require a gross qualitative alteration in the composition of axonally transported proteins, the relative labeling of a small subset of rapidly transported proteins is altered dramatically (changes of more than 20-fold) and reproducibly (more than 30 animals) by axotomy. One of these growth-associated proteins (GAPs) was soluble in an aqueous buffer, while three were associated with a crude membrane fraction. The labeling of all three of the membrane-associated GAPs increased during the first 8 d after axotomy, and they continued to be labeled for at least 4 wk. The modulation of these proteins after axotomy is consistent with the possibility that they are involve in growth-specific functions and that the altered expression of a small number of genes is a crucial regulatory event in the transition of a mature neuron to a growth state. In addition to these selective changes in rapidly transported proteins, we observed the following more general metabolic correlates of the regeneration process: The total radioactive label associated with the most rapidly transported proteins (groups I and II) increased three to fourfold during the first 8 d after the nerve was crushed, while the total label associated with more slowly moving proteins (group IV) increased about 10-fold during this same period. Among these more slowly transported polypeptides, five were observed whose labeling increased much more than the average. Three of these five polypeptides resemble actin and alpha- and beta-tubulin in their electrophoretic properties.  相似文献   

15.
The distribution of labeled ribonucleic acid (RNA) associated with polysomes from Escherichia coli infected with the bacteriophage R17 was investigated. Pulse-labeling of RNA for 15 sec with (3)H-uridine resulted in increased labeling of the RNA associated with larger polysomes from infected cells as compared to control cells. Analysis of the RNA indicated that the increased labeling of large polysomes resulted from the presence of labeled double-stranded viral RNA. Other species of 15-sec pulse-labeled RNA entered into polysome formation in both infected and control cells. On the other hand, pulse-labeling of cultures for 15 sec with (3)H-uridine followed by a 5-min chase with unlabeled uridine resulted in a greater decrease in the amount of labeled RNA associated with large polysomes from infected cells as compared to control cells. This decreased labeling of large polysomes from infected cells was accompanied by an increased amount of label associated with the monomer to trimer regions. Analysis of RNA labeled under pulse-chase conditions indicated that virus infection resulted in an increased amount of heterogeneous 5 to 15S RNA in both the monomer to trimer and ribosomal subunit-soluble regions of the polysome profile. Labeled 5 to 15S RNA extracted directly from infected cells under pulse-chase conditions, without prior polysome fractionation, was characterized by a shift toward a distribution of smaller polynucleotides.  相似文献   

16.
17.
Novikoff rat hepatoma cells (subline NlSl-67) in suspension culture incorporate 3H-5-uridine into the acid-soluble nucleotide pool more rapidly than into RNA, resulting in the accumulation of labeled UTP in the cells. When labeled uridine is removed from the medium after 20 minutes or 4.75 hours of labeling, the rate of incorporation of label from the nucleotide pool into RNA decreases to less than 10% of the original rate within five to ten minutes, in spite of the presence of a large pool of labeled UTP in the cells, and incorporation ceases completely if an excess of unlabeled uridine is present during the chase. Upon addition of 14C-uridine to 3H-uridine pulse-labeled, chased cells, the 14C begins to be incorporated into RNA without delay and at a rate predetermined by the concentration of 14C-uridine in the medium and without affecting the fate of the free 3H-nucleotides labeled during the pulse-period. The results are interpreted to indicate that uridine is incorporated into at least two different pools, only one of which serves as primary source of nucleotides for RNA synthesis. During active synthesis of RNA, the latter pool of free nucleotides is very small and rapidly exhausted when uridine is removed from the medium. However, UTP accumulates in this pool when cells are labeled at 4–6°, since at this temperature RNA synthesis is blocked while uridine is still phosphorylated by the cells, and the UTP is rapidly incorporated into RNA during a subsequent ten-minute chase at 37°. From these types of experiments it is estimated that only 20–25% of the total uridine nucleotides formed in the cells from uridine in the medium is directly available for RNA synthesis and that the remainder becomes available only at a slow rate. Evidence is presented which suggests that one uridine nucleotide pool is located in the cytoplasm and another in the nucleus and that mainly the nuclear pool supplies nucleotides for RNA synthesis. The size of the latter pool is under strict regulatory control, since preincubation of the cells with 0.5 mM unlabeled uridine has little or no effect on the subsequent incorporation of 3H-uridine, although it results in an increase of the overall cellular uridine nucleotide content to at least 5 mM. Other results indicate that adenosine is also incorporated into two independent nucleotide pools, whereas the cells normally appear to possess a single thymidine nucleotide pool.  相似文献   

18.
19.
To study the mechanism by which ultraviolet (UV) light inhibits DNA replication, we examined the effects of UV 254 nm irradiation on the replication of simian virus 40 (SV40) DNA and SV40-based plasmid in monkey cells. The study was designed to determine the relative contributions made by inhibition of replication initiation and chain elongation to the immediate inhibition of DNA replication following UV irradiation. We used two-dimensional neutral-alkaline electrophoresis to examine the behaviour of replication intermediates unambiguously. Kinetic analysis using this technique showed that initiation of replication started to decline at 15 min post-irradiation. When the pulse label incorporated in SV40 replication intermediates before irradiation was chased for 1 h, most of the label was found in mature Form I and II molecules. This indicated that replication elongation took place on damaged template. We also used a transfection technique to show that heavily irradiated plasmids replicated efficiently in unirradiated transfected cells. By the transfection technique, we observed that UV irradiation of host cells dose-dependently inhibited replication of transfected non-irradiated plasmids, suggesting that the inhibition of DNA replication is due to a global change in cellular physiology induced by UV. This change was also apparent from poor staining of the chromatin by fluorescent-DNA-binding dyes immediately after UV irradiation of intact cells. We conclude that a significant fraction of chain elongation proceeds on damaged templates and DNA replication during the acute response of cells irradiated with UV is mainly controlled by the inhibition of replication initiation.  相似文献   

20.
Ultraviolet light-induced inhibition of small nuclear RNA synthesis   总被引:1,自引:0,他引:1  
Two apparently distinct types of inhibition of the synthesis of U1, U2, U3, U4, and U5 small nuclear RNA, induced by ultraviolet (UV) radiation, have been described before: immediate and delayed. Our present observation can be summarized as follows: a) neither the immediate nor the delayed inhibition appear to be mediated by the formation of cyclobutane pyrimidine dimers, since they were not prevented by photoreactivating light, in ICR 2A frog cells; b) the inhibition of U1 RNA synthesis, monitored in HeLA cells within the first few minutes after irradiation, extrapolated to a substantial suppression at time zero of postirradiation cell incubation, providing further support for the proposal that the immediate inhibition is a reaction separate from the delayed UV light-induced inhibition of U1 RNA synthesis; c) the transition from the pattern of the immediate inhibition to that of the delayed inhibition (disappearance of the UV-resistant fraction of U1 RNA synthesis and increased rate of inhibition) occurred gradually, without an apparent threshold, within the first 2 hr of incubation after irradiation; and d) the incident UV dose that resulted in a 37% level of residual U1 RNA synthesis (D37) during the delayed inhibition was about 7 J/m2, with an apparent UV dose threshold, and was about 60 J/m2 for the immediate inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号