首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceriporiopsis subvermispora is a selective white rot basidiomycete which degrades lignin in wood at a distance far from enzymes. Low molecular mass metabolites play a central role in the oxidative degradation of lignin. To understand the unique wood-decaying mechanism, we surveyed the oxidized derivatives of ceriporic acids (alk(en)ylitaconic acids) produced by C. subvermispora using high-resolution liquid chromatography multiple-stage mass spectrometry (HR-LC/MSn). The analysis of the precursor and product ions from the extract suggested that an epoxidized derivative of ceriporic acid is produced by the fungus. To identify the new metabolite, an authentic compound of ceriporic acid epoxide was synthesized in vitro by reacting (R)-3-[(Z)-hexadec-7-enyl]-itaconic acid (ceriporic acid C) with m-chloroperbenzoic acid. The precursor and product ions from the natural metabolite and authentic epoxide were identical and distinguishable from those of hydroxy and hydroperoxy derivatives after reduction with NaBD4. Feeding experiments with [U-13C]-glucose, 99% and the subsequent analyses of the first and second generation product ions demonstrated that the oxidized ceriporic acid was (R)-3-(7,8-epoxy-hexadecyl)-itaconic acid. To our knowledge, this study is the first to report that natural alkylitaconic acid bears an epoxy group on its side chain.  相似文献   

2.
The degradation of the components of Japanese beech and Japanese cedar wood was measured over time in cultures of the white-rot fungus Ceriporiopsis subvermispora. Although there was no initial degradation of cedar wood, after 12 weeks the mass loss of both cedar and beech wood was 15–20%. The mass losses of filter paper in beech wood-containing cultures and glucose cultures after 12 weeks were 87% and 70%, respectively. The ratio of lignin loss to mass loss of both beech and cedar wood cultures approached 2.0. Although the cellulose loss in cedar wood was very low throughout the 12-week incubation, C. subvermispora degraded the hemicellulose in Japanese cedar much more effectively than that in Japanese beech. These results confirm that C. subvermispora is a selective lignin degrader. During the 12-week incubation with Japanese beech wood, C. subvermispora continuously produced at least one of three phenol oxidases: laccase was produced initially, followed by Mn-independent peroxidase activity peaking at 6 weeks and Mn-dependent peroxidase activity peaking at 10 weeks. Lignin peroxidase and carboxymethylcellulase activities peaked after 3 weeks of incubation. Avicelase activity was present throughout the incubation period, although the activity was very low. The low-molecular-mass fraction of the extracellular medium, which catalyzes a redox reaction between O2 and electron donors to produce hydroxyl radical, may act synergistically with the enzymes to degrade wood cell walls.  相似文献   

3.
White zones produced on biodegraded Pinus radiata wood chips were characterized by micro-localized-FTIR (Fourier Transformed Infra Red) spectroscopy and scanning electron microscopy. Both techniques permitted assignment of the white zones to a selective lignin removal process. Although both fungi studied have degraded lignin selectively in these restricted superficial areas, chemical analysis of the wood chips indicated that Ganoderma australe removed 16% of the initial amount of glucan at the 20% weight loss level. Ceriporiopsis subvermispora did not remove glucan at weight loss values below 17%. Prolonged biodegradation resulted in reduction of white zones by G. australe, and increased white zones from C. subvermispora decayed samples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A lignin-degrading basidiomycete, Ceriporiopsis subvermispora produces a series of alkyl- and alkenylitaconates (ceriporic acids). Previously, two alkylitaconic acids with tetradecyl and hexadecyl side chains were isolated and identified as 1-heptadecene-2,3-dicarboxylic acid (ceriporic acid A) and 1-nonadecene-2,3-dicarboxylic acid (ceriporic acid B). In the present study, one hexadecenylitaconate (ceriporic acid C) was isolated and its chemical structure was analyzed by glycolation and subsequent (1) trimethylsilation, or (2) acetalation with acetone and acetone-d6. Analyses of the isolated metabolite demonstrated that the hexadecenylitaconic acid was (Z)-1,10-nonadecadiene-2,3-dicarboxylic acid. The structure of the side chain in ceriporic acid C was the same as that of hexadecenylcitraconate, chaetomellic acid B. Thus, it was found that ceriporic acids share close structural similarity with alk(en)yl citraconate derivatives, chaetomellic acids and other lichen lactones, protolichesterinic, lichesterinic, and murolic acids.  相似文献   

5.
The aim of this work was to make a survey describing factors that influence the production of extracellular enzymes by white-rot fungus Ceriporiopsis subvermispora responsible for the degradation of lignocellulolytic materials. These factors were: carbon sources (glucose, cellulose, hemicellulose, lignin, maltose and starch), nitrogen sources (ammonium sulphate, potassium nitrate, urea, albumin and peptone), pH, temperature and addition of three different concentrations of Cu2+ and Mn2+. The cellulase and xylanase activities were similar in medium with different carbon sources and the highest cellulase and xylanase activities were measured in medium with urea and potassium nitrate as nitrogen sources, respectively. The highest laccase activity was observed in medium with lignin and peptone as carbon and nitrogen sources. In other experiments, time course of production of lignocellulolytic enzymes by white-rot fungus C. subvermispora in medium with lignin or glucose as carbon sources was observed.  相似文献   

6.
Lipid peroxidation by managanese peroxidase (MnP) is reported to decompose recalcitrant polycyclic aromatic hydrocabon (PAH) and nonphenolic lignin models. To elucidate the oxidative process, linoleic acid and 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid [13(S)-HPODE] were reacted with MnPs from Ceriporiopsis subvermispora and Bjerkandera adusta and the free radicals produced were analyzed by ESR. When the MnPs were reacted with 13(S)-HPODE in the presence of Mn(II), H2O2 and tert-nitrosobutane (t-NB), the ESR spectrum contained a sharp triplet of acyl radical (aN = 0.81 mT). Formation of acyl radical was also observed in the reactions of Mn(III)-tartrate with 13(S)-HPODE and with linoleic acid, but the latter reaction occurred explosively after an induction period of around 30 min. Reactions of MnP with linoleic acid in the presence of Mn(II), H2O2 and t-NB gave no spin adducts while addition of t-NB after preincubation of linoleic acid with MnP/Mn(II)/H2O2 for 2 h gave spin adducts of carbon-centered (aN = 1.53 mT, aH = 0.21 mT) and acyl (aN = 0.81 mT) radicals. In contrast to linoleic acid, methyl linoleate and oleic acid were not peroxidized by MnP and chelated Mn(III) within a few hours, indicating that structures containing both the 1,4-pentadienyl moiety and a free carboxyl group are necessary for inducing the peroxidation in a short reaction time. These results indicate that MnP-dependent lipid peroxidation is not initiated by direct abstraction of hydrogen from the bis-allylic position during turnover but proceeds by a Mn(III)-dependent hydrogen abstraction from enols and subsequent propagation reactions involving the formation of acyl radical from lipid hydroperoxide. This finding expands the role of chelated Mn(III) from a phenol oxidant to a strong generator of free radicals from lipids and lipid hydroperoxides in lignin biodegradation.  相似文献   

7.
The lignin-modifying enzymes (LMEs) play an important role in decomposition of agricultural residues, which contain a certain amount of lignin. In this study, the production of LMEs by three co-cultivated combinations of Phlebia radiata, Dichomitus squalens and Ceriporiopsis subvermispora and the respective monocultures was comparatively investigated. Laccase and manganese peroxidases (MnP) were significantly promoted in the co-culture of P. radiata and D. squalens, and corncob was verified to be beneficial for laccase and MnP production. Moreover, laccase production by co-culture of P. radiata and D. squalens with high ratio of glucose to nitrogen was higher than low ratio under carbon- and nitrogen-meager conditions. New laccase isoenzymes measured by Native-PAGE were stimulated by co-cultured P. radiata with D. squalens or C. subvermispora, respectively, growing in the defined medium containing corncob, but the expression of laccase was greatly restrained by the co-culturing of D. squalens with C. subvermispora. This study showed that the synergistic and depressing effects of co-cultivation of P. radiata, D. squalens and C. subvermispora on LMEs were species specific.  相似文献   

8.
The white-rot fungus Trametes versicolor grown in submerged culture produced two laccase isoenzymes, LacI and LacII. Addition of insoluble lignocellulosic materials into the culture medium increased the total laccase activity. The proportion of laccase isoenzymes also changed depending on the lignocellulosic material employed, with ratios of activity LacII/LacI from 0.9 (barley straw) to 4.4 (grape stalks). Besides, this proportion played an important role in the dye decolourisation.  相似文献   

9.
The decline of lignin peroxidase (LiP) activity observed after day 6 in cultures of Phanerochaete chrysosporium was found to be correlated with the appearance of idiophasic extracellular protease activity. Daily addition of glucose started on day 6 resulted in low protease levels and in turn in stable LiP levels. Addition of cycloheximide to day 6 cultures resulted in virtually no change of LiP activity and extracellular protein and negligible levels of protease activity, indicating that this protease is synthesized de novo. LiP activity was found to be stable upon removal of the fungal pellets on day 6 and incubation of the extracellular fluid alone. An almost complete disappearance of LiP activity and LiP proteins and high levels of protease activity were observed upon incubation of 6-day extracellular fluid in the presence of fungal pellets. Moreover, incubation of crude or purified LiP isoenzymes with protease-rich extracellular fluid of day 11 or 11-day cell extracts resulted in a marked loss of activity. In contrast, incubation of crude LiP with boiled and clarified extracellular fluid of day 11 cultures resulted in virtually no loss of activity. These results indicate that protease-mediated degradation of LiP proteins is a major cause for the decay of LiP activity during late secondary metabolism in cultures of P. chrysosporium.  相似文献   

10.
The decline of lignin peroxidase (LiP) activity observed after day 6 in cultures of Phanerochaete chrysosporium was found to be correlated with the appearance of idiophasic extracellular protease activity. Daily addition of glucose started on day 6 resulted in low protease levels and in turn in stable LiP levels. Addition of cycloheximide to day 6 cultures resulted in virtually no change of LiP activity and extracellular protein and negligible levels of protease activity, indicating that this protease is synthesized de novo. LiP activity was found to be stable upon removal of the fungal pellets on day 6 and incubation of the extracellular fluid alone. An almost complete disappearance of LiP activity and LiP proteins and high levels of protease activity were observed upon incubation of 6-day extracellular fluid in the presence of fungal pellets. Moreover, incubation of crude or purified LiP isoenzymes with protease-rich extracellular fluid of day 11 or 11-day cell extracts resulted in a marked loss of activity. In contrast, incubation of crude LiP with boiled and clarified extracellular fluid of day 11 cultures resulted in virtually no loss of activity. These results indicate that protease-mediated degradation of LiP proteins is a major cause for the decay of LiP activity during late secondary metabolism in cultures of P. chrysosporium.  相似文献   

11.
Summary Oxygen consumption of Rhizopus arrhizus cultures was studied in order to understand why anaerobic-type metabolism takes place during growth, with high lactic acid synthesis. Rather than insufficient oxygen supply, pellet-type morphology was found to be responsible. Cultures with carriers and on thin liquid films were investigated with very good results for the second method. Not only was biomass production improved, but also carbon consumption was higher and lactic acid synthesis less compared with traditional submerged flask cultures. Offprint requests to: J. C. Roux  相似文献   

12.
13.
三种白腐菌及其组合菌种木质素降解酶比较研究   总被引:2,自引:0,他引:2  
朱红栓菌Trametes cinnabarina、糙皮侧耳Pleurotus ostreatus、黄孢原毛平革菌Phanerochaete chrysosporium是产生木质素降解酶能力强的菌株。对三种白腐菌及其组合菌种产生木质素降解酶能力和行为进行了比较分析和研究。结果表明,最佳培养方式为液体振荡培养;最佳培养基为酵母膏液体培养基。在产漆酶(laccases,lacs)方面,Pleurotus ostreatus和Phanerochaete chrysosporium的组合菌种的酶活最强,在第6天出现峰值,酶活达到450U/L;在产锰过氧化物酶(manganese peroxidases,mnps)方面,Trametes cinnabarina和Pleurotus ostreatus的组合菌种的酶活最强,在第10天出现峰值,酶活达到1050U/L;在产木质素过氧化物酶(lignin peroxidases,lips)方面,Trametes cinnabarina和Phanerochaete chrysosporium的组合菌种的酶活最强,在第8天出现产酶峰值,酶活达到2990U/L。筛选结果表明,组合菌种比单菌种产生的三种主要木质素降解酶的活性强,这为白腐菌高效产酶提供了一条新的途径,并为白腐菌研究领域的后续工作奠定基础。  相似文献   

14.
The white rot basidiomycete Pleurotus ostreatus produces two manganese peroxidase (MnP) isoenzymes when grown in solid stationary conditions on poplar sawdust, whereas a lower production of these same enzymes is observed on fir sawdust. Addition of Mn(2+) to poplar culture resulted in a threefold increase of MnP activity; the same addition to fir culture was able to increase tenfold the MnP production. The two MnP isoenzymes (MnP2 and MnP3) were purified from P. ostreatus poplar culture. The isoenzymes differ in their pI values, molecular masses, and N-terminal sequences. MnP3 has the same N-terminal sequence as that of a P. ostreatus MnP previously reported. Both isoenzymes exhibit Mn(2+)-dependent and Mn(2+)-independent peroxidase activities when tested on phenolic substrates. The gene coding for the new isoenzyme MnP2 was cloned and sequenced and the promoter region analyzed. Furthermore, the chromosomal localization of all known P. ostreatus genes was determined.  相似文献   

15.
Polygalacturonases are pectinolytic enzymes that catalyze the hydrolysis of the plant cell-wall pectin backbone. They are widely used in the food industry for juice extraction and clarification. Aspergillus giganteus produces one polygalacturonase (PG) on liquid Vogel medium with citrus pectin as the only carbon source. In specific applications, such as those used in the food and medicine industries, the PG must be free of substances that could affect the characteristics of the product and the process, such as color, flavor, toxicity, and inhibitors. We present here an efficient, simple, and inexpensive method for purifying the A. giganteus PG and describe the characteristics of the purified enzyme. Purified PG was obtained after two simple steps: (1) protein precipitation with 70% ammonium sulfate saturation and (2) anion-exchange chromatography on a DEAE-Sephadex A-50 column. The final enzyme solution retained 86.4% of its initial PG activity. The purified PG had a molecular weight of 69.7 kDa, exhibited maximal activity at pH 6.0 and 55–60°C, and was stable in neutral and alkaline media. It had a half-life of 115, 18, and 6 min at 40, 50 and 55°C, respectively. Purified PG showed its highest hydrolytic activity with low-esterified and nonesterified substrates, releasing monogalacturonic acid from substrate, indicating that it is an exopolygalacturonase. PG activity was enhanced in the presence of β-mercaptoethanol, dithiothreitol, Co2+, Mn2+, Mg2+, NH4 +, and Na+ and was resistant to inhibition by Pb2+.  相似文献   

16.
Enzymes produced by Ganoderma australe in solid-state fermentation and submerged cultures were evaluated. Strain A464 produced laccase activity in liquid medium and in solid-state cultures containing Drimys winteri or Eucalyptus globulus wood chips, while MnP and LiP activities were not detected. On the other hand, strain A272 cultured for 75 days on E. globulus presented MnP activity of 719 IU/kg of wood. The suitability of D. winteri wood as a substrate enabling MnP production was checked with a well-documented MnP-producing basidiomycete, Ceriporiopsis subvermispora, which produced MnP activity of 327 IU/kg of wood in 9-day-old cultures. Data from two different G. australe strains (A272 and A464) indicated that MnP secretion depended on strain origin as well as on culture conditions.  相似文献   

17.
池玉杰  伊洪伟 《菌物学报》2007,26(1):153-160
<正>近年来许多研究者进行了木材白腐菌分解木质素的酶系统对木质素的催化分解机制的研究。木材白腐菌在分解木质素的过程中会产生分解木质素的酶系统,氧化与分解木质素,这些酶系统主要包括细胞外过氧化物酶(锰过氧化物酶-MnP、木质素过氧化物酶-LiP)和细胞外酚氧化酶-漆酶(laccase)。在降解  相似文献   

18.
The influence of aromatic phenolic and non-phenolic acids on manganese peroxidase (MnP)-dependent peroxidation of linoleic acid, and oxidation of a non-phenolic lignin model compound (LMC) was studied. Phenolic compounds inhibited both the MnP-dependent lipid peroxidation (LPO) and non-phenolic LMC degradation in the system. The antioxidant activity of the aromatic compounds in the enzymatic system with MnP-dependent LPO depends on the presence of the phenolic hydroxyl groups attached to the aromatic ring structure, the methoxylation of the hydroxyl group in the ortho position in diphenolics, and number of carbon atoms in the side chain. Natural phenolic compounds inhibit the oxidation of non-phenolic lignin in the system based on MnP-mediated LPO, but do not prevent it. This result indicates that MnP-mediated LPO may play an important role in lignin degradation even in the presence of the phenolic antioxidant compounds, and supports the possibility of the involvement of LPO in the degradation of lignin in wood.  相似文献   

19.
Abstract 62 isolates of Penicillium and Aspergillus were screened for cyclopiazonic acid (CPA) production by surface and submerged culture on different media. The production of this mycotoxin was restricted to Penicillium camembertii group II (and its domesticated form P. camembertii ), P. griseofulvum , and Aspergillus flavus (and its domesticated form A. oryzae ). The best yield of CPA was obtained by a strain of P. griseofulvum , but several strains of P. camembertii group II were also good producers. Propionic acid (500 and 1000 mg/l medium) did not enhance the production of CPA. The best yields of CPA were obtained in submerged culture, but in some cases growth and CPA production only occured in surface culture. A simplified procedure for isolation of CPA is described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号