首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coordinated activation of distal forearm muscles allows the hand and fingers to be shaped during movement and grasp. However, little is known about how the muscle activation patterns are reflected in multi-channel mechanomyogram (MMG) signals. The purpose of this study is to determine if multi-site MMG signals exhibit distinctive patterns of forearm muscle activity. MMG signals were recorded from forearm muscle sites of nine able-bodied participants during hand movement. By using 14 features selected by a genetic algorithm and classified by a linear discriminant analysis classifier (LDA), we show that MMG patterns are specific and consistent enough to identify 7 ± 1 hand movements with an accuracy of 90 ± 4%. MMG-based movement recognition required a minimum of three recording sites. Further, by classifying five classes of contraction patterns with 98 ± 3% accuracy from MMG signals recorded from the residual limb of an amputee participant, we demonstrate that MMG shows pattern-specificity even in the absence of typical musculature. Multi-site monitoring of the RMS of MMG signals is suggested as a method of estimating the relative contributions of muscles to motor tasks. The patterns in MMG facilitate our understanding of the mechanical activity of muscles during movement.  相似文献   

2.
In this study, we aimed to compare the intrarater reliability and validity of muscle thickness measured using ultrasonography (US) and muscle activity via electromyography (EMG) during manual muscle testing (MMT) of the external oblique (EO) and lumbar multifidus (MF) muscles. The study subjects were 30 healthy individuals who underwent MMT at different grades. EMG was used to measure the muscle activity in terms of ratio to maximum voluntary contraction (MVC) and root mean square (RMS) metrics. US was used to measure the raw muscle thickness, the ratio of muscle thickness at MVC, and the ratio of muscle thickness at rest. One examiner performed measurements on each subject in 3 trials. The intrarater reliabilities of the % MVC RMS and raw RMS metrics for EMG and the % MVC thickness metrics for US were excellent (ICC = 0.81–0.98). There was a significant difference between all the grades measured using the % MVC thickness metric (p < 0.01). Further, this % MVC thickness metric of US showed a significantly higher correlation with the EMG measurement methods than with the others (r = 0.51–0.61). Our findings suggest that the % MVC thickness determined by US was the most sensitive of all methods for assessing the MMT grade.  相似文献   

3.
It is unknown if females and males use jaw muscles similarly during exercise. This pilot study assessed jaw elevator muscle duty factors (DFs = time of muscle activity/total recording time) at repeated sessions to test if DFs are reliable and different between sexes during exercises in two environments. Ten female and seven male subjects recruited from university soccer teams provided informed consent. Surface electromyography was recorded from masseter and temporalis muscles during biting and leg-extension laboratory exercises. Average activities to produce 20 N bite-forces for each muscle and subject determined thresholds (5–80%·T20 N) for subject-specific DF calculations during exercises performed in laboratory and natural environments. Subjects self-recorded via portable electromyography equipment during in-field leg-extension and weight-lifting exercises. Effects of variables on DFs were assessed via ANOVA (α = 0.05) and simple effects testing (Bonferroni-adjusted p  0.012). All subjects used jaw muscles during exercises in both environments. DFs between laboratory sessions were reliable (R = 0.84). During laboratory exercises, male temporalis DFs were significantly higher than female DFs from both muscles (p  0.001). During in-field exercises females had higher DFs during weight-lifting while males had higher DFs during leg-extensions. In-field sex differences were significant at most thresholds and showed larger effect sizes for leg-extension compared to weight-lifting exercises.  相似文献   

4.
The physiology of the muscles associated with the vagina in the blood-feeding insect, Rhodnius prolixus Stal, was investigated with the use of Methylene Blue staining to visualize the anatomy, and a micro force transducer to record spontaneous and neurally-evoked contractions. The vagina is associated with a dorsal muscle and a set of paired lateral muscles. The dorsal muscle extends from the base of the common oviduct to apodemes located laterally on sternite VIII, the first genital segment. The lateral muscles extend from a medially-located apodeme on the posterior edge of sternite VI around each side of the common oviduct to travel posteriorly along the side of the vagina before inserting laterally on apodemes on sternite VIII. The vagina muscles display spontaneous and neurally-evoked contractions that are prolonged but transient. The response to evoked contractions shows that the muscles are innervated by both excitatory and inhibitory motor axons. The degree of tension generated by evoked contractions is dependent on the frequency of stimulation with maximal tension being generated at 20–30 Hz. This tension, which often exceeds 400 mg, is transient and returns to a baseline within 1 to 2 min during continuous stimulation. These results, which are the first to describe this chamber in this well-studied insect, are discussed with respect to the act of egg laying.  相似文献   

5.
Purpose: To verify the precision of surface electromyography (sEMG) in locating the innervation zone of the gracilis muscle, by comparing the location of the IZ estimated by means of sEMG with in vivo location of the nerve bundle entry point in patients before graciloplasty procedure due to fecal incontinence. Methods: Nine patients who qualified for the graciloplasty procedure underwent sEMG on both gracilis muscle before their operations. During surgery the nerve bundle was identified by means of electrical stimulation. The distance between the proximal attachment and the nerve entry point into the muscle’s body was measured. Both measurements (sEMG and in vivo identification) were compared for each subject. Results: On average, the IZ was located 65.5 mm from the proximal attachment. The mean difference in location of the innervation zones in each individual was 10 ± 9.7 mm, maximal – 30 mm, the difference being statistically significant (p = 0.017). It was intraoperatively confirmed, that the nerve entered the muscle an average of 62 mm from the proximal attachment. The largest difference between the EMG IZ estimation and nerve bundle entry point was 5 mm (mean difference 2.8 mm, p = 0.767). Conclusion: Preoperative surface electromyography of both gracilis muscles is a safe, precise and reliable method of assessing the location of the innervation zones of the gracilis muscles. The asymmetry of the IZ location in left and right muscles may be important in context of technical aspects of the graciloplasty procedure.  相似文献   

6.
The purpose of this study was to examine the muscular activities and kinetics of the trunk during unstable sitting in healthy and LBP subjects. Thirty-one healthy subjects and twenty-three LBP subjects were recruited. They were sat on a custom-made chair mounted on a force plate. Each subject was asked to regain balance after the chair was tilted backward at 20°, and then released. The motions of the trunk and trunk muscle activity were examined. The internal muscle moment and power at the hip and lumbar spine joints were calculated using the force plate and motion data. No significant differences were found in muscle moment and power between healthy and LBP subjects (p > 0.05). The duration of contraction of various trunk muscles and co-contraction were significantly longer in the LBP subjects (p < 0.05) when compared to healthy subjects, and the reaction times of the muscles were also significantly reduced in LBP subjects (p < 0.05). LBP subjects altered their muscle strategies to maintain balance during unstable sitting, but these active mechanisms appear to be effective as trunk balance was not compromised and the internal moment pattern remained similar. The changes in muscle strategies may be the causes of LBP or the result of LBP with an attempt to protect the spine.  相似文献   

7.
Epidemiological studies have identified obesity as a possible risk factor for low back disorders. Biomechanical models can help test such hypothesis and shed light on the mechanism involved. A novel subject-specific musculoskeletal-modelling approach is introduced to estimate spinal loads during static activities in five healthy obese (BMI > 30 kg/m2) and five normal-weight (20 < BMI < 25 kg/m2) individuals. Subjects underwent T1 through S1 MR imaging thereby measuring cross-sectional-area (CSA) and moment arms of trunk muscles together with mass and center of mass (CoM) of T1-L5 segments. MR-based subject-specific models estimated spinal loads using a kinematics/optimization-driven approach. Average CSAs of muscles, moment arms of abdominal muscles, mass and sagittal moment arm of CoM of T1-L5 segments were larger in obese individuals (p < 0.05 except for the moment arm of CoMs) but moment arms of their back muscles were similar to those of normal-weight individuals (p > 0.05). Heavier subjects did not necessarily have larger muscle moment arms (e.g., they were larger in 64 kg (BMI = 20.7 kg/m2) subject than 78 kg (BMI = 24.6 kg/m2) subject) or greater T1-L5 trunk weight (e.g., the 97 kg (BMI = 31 kg/m2) subject had similar trunk weight as 109 kg (BMI = 33.3 kg/m2) subject). Obese individuals had in average greater spinal loads than normal-weight ones but heavier subjects did not necessarily have greater spinal loads (117 kg (BMI = 40.0 kg/m2) subject had rather similar L5-S1 compression as 105 kg (BMI = 34.7 kg/m2) subject). Predicted L4-L5 intradiscal pressures for the normal-weight subjects ranged close to the measured values (R2 = 0.85–0.92). Obese individuals did not necessarily have greater IDPs than normal-weight ones.  相似文献   

8.
The validity of the Sorensen test as a measure for back muscle endurance is controversial due to a possible impact of hip extensor muscles. The aim of this study was to investigate the criterion validity of an alternative test (Ito test) compared to the Sorensen test. Both procedures were performed by 29 healthy subjects (11 women) for 5 s and until exhaustion (randomized order). EMG activity was measured from 3 lumbar back and 3 hip extensor muscles. Muscular involvement in test positions was calculated as percentage of maximal voluntary contraction (MVC). Muscle fatigue was determined by the normalized regression coefficient of the median frequencies of the EMG power spectrum (NMFslope). Prediction of holding time by NMFslope values was investigated using regression analysis. In the test positions, the hamstring muscles were activated to a higher MVC percentage in the Sorensen than in the Ito test, while the iliocostalis muscle was less activated. Similarly, the iliocostalis (p = 0.006) and the multifidi muscles (p = 0.03) significantly contributed to predict holding time in the Ito test, whereas the multifidi muscles (p = 0.001) and the semitendinosus muscle (p = 0.046) did so in the Sorensen test. The results of this study indicate that the Ito test might present a valuable alternative for testing back muscle endurance in LBP patients.  相似文献   

9.
Interhemispheric connections have been demonstrated between the motor cortex controlling muscle pairs. However, these investigations have tended to concentrate upon hand muscles. We have extended these investigations to proximal muscles that control the scapula upon the trunk and help to move and stabilise the shoulder. Using a paired pulse transcranial magnetic stimulation protocol, the interhemispheric interactions between different shoulder girdle muscle pairs, serratus anterior, upper trapezius and lower trapezius were investigated. Test motor evoked potentials were conditioned using conditioning pulse intensities of 80% and 120% of active motor threshold at three different condition-test intervals, during three different tasks. Interhemispheric inhibition was observed in upper trapezius using a conditioning intensity of 120% and condition-test interval of 8 ms (17 ± 18%, p < 0.007). A trend towards inhibition was observed in lower trapezius and serratus anterior using a conditioning intensity of 120% and a condition-test interval of 8 ms (13 ± 22%; p < 0.07 and 10 ± 19% respectively; p < 0.07). No interhemispheric facilitation was evoked. The study demonstrates that a low level of interhemispheric inhibition rather than interhemispheric facilitation could be evoked between these muscle pairs.  相似文献   

10.
Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40 ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4 ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8 ± 10.0 ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information.  相似文献   

11.
Surgical repair for large rotator cuff tear remains challenging due to tear size, altered muscle mechanical properties, and poor musculotendinous extensibility. Insufficient extensibility might lead to an incomplete reconstruction; moreover, excessive stresses after repair may result in repair failure without healing. Therefore, estimates of extensibility of cuff muscles can help in pre-surgical planning to prevent unexpected scenarios during surgery. The purpose of this study was to determine if quantified mechanical properties of the supraspinatus muscle using shear wave elastography (SWE) could be used to predict the extensibility of the musculotendinous unit on cadaveric specimens. Forty-five fresh-frozen cadaveric shoulders (25 intact and 20 with rotator cuff tear) were used for the study. Passive stiffness of 4 anatomical regions in the supraspinatus muscle was first measured using SWE. After detaching the distal edge of supraspinatus muscle from other cuff muscles, the detached muscle was axially pulled with the scapula fixed. The correlation between the SWE modulus and the extensibility of the muscle under 30 and 60 N loads was assessed. There was a significant negative correlation between SWE measurements and the experimental extensibility. SWE modulus for the anterior-deep region in the supraspinatus muscle showed the strongest correlation with extensibility under 30 N (r = 0.70, P < 0.001) and 60 N (r = 0.68, P < 0.001). Quantitative SWE assessment for the supraspinatus muscle was highly correlated with extensibility of musculotendinous unit on cadaveric shoulders. This technique may be used to predict the extensibility for rotator cuff tears for pre-surgical planning.  相似文献   

12.
We investigated the muscle fiber conduction velocity (MFCV) during gait phases of the lower limb muscles in individuals with various degrees of diabetic peripheral neuropathy (DPN). Forty-five patients were classified into severity degrees of DPN by a fuzzy model. The stages were absent (n = 11), mild (n = 14), moderate (n = 11) and severe (n = 9), with 10 matched healthy controls. While walking, all subjects had their sEMG (4 linear electrode arrays) recorded for tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL) and biceps femoris (BF). MFCV was calculated using a maximum likelihood algorithm with 30 ms standard deviation Gaussian windows. In general, individuals in the earlier stages of DPN showed lower MFCV of TA, GM and BF, whilst individuals with severe DPN presented higher MFCV of the same muscles. We observed that mild patients already showed lower MFCV of TA at early stance and swing, and lower MFCV of BF at swing. All diabetic groups showed a markedly reduction in MFCV of VL, irrespective of DPN. Severe patients presented higher MFCV mainly in distal muscles, TA at early and swing phases and GM at propulsion and midstance. The absent group already showed MFCV of VL and GM reductions at the propulsion phase and of VL at early stance. Although MFCV changes were not as progressive as the DPN was, we clearly distinguished diabetic patients from controls, and severe patients from all others.  相似文献   

13.
The aim of this preliminary study was to examine the validity of a recently-introduced tool (MyotonPRO) for the assessment of mechanical parameters of the main lower extremity muscles in patients with chronic stroke. Thigh and shank muscles of 20 stroke patients with limited hypertonia (11 men and 9 women; mean age: 52 ± 11 yrs) and 20 healthy controls (11 men and 9 women; mean age: 53 ± 10 yrs) were bilaterally evaluated with (i) MyotonPRO for muscle stiffness, tone and elasticity, (ii) ultrasonography for muscle and subcutaneous thickness, and (iii) dynamometry for isometric muscle strength. MyotonPRO parameters of stroke patients were reassessed a week later (inter-day test-retest design). For all the investigated muscles, MyotonPRO variables did not differ between the more affected and the less affected side of patients (P > 0.05 for main side effect), and neither differed between patients and controls (P > 0.05 for main group effect), except for gastrocnemius medialis stiffness that was higher in patients (300 ± 51 N/m) than in controls (281 ± 29 N/m; P < 0.05). Thigh muscle stiffness was negatively correlated to subcutaneous thickness (r = −0.84 for the vastus lateralis; P < 0.001), while only tibialis anterior stiffness and tone correlated positively with muscle thickness (both r = 0.46; P < 0.01). Test-retest reliability of MyotonPRO parameters was adequate, except for muscle elasticity. The validity of MyotonPRO for the evaluation of thigh muscles in chronic stroke patients is partially challenged by the poor discriminant ability and by the considerable impact of subcutaneous tissue thickness (sex-dependent) on mechanical parameters. The potential validity of MyotonPRO for the assessment of shank muscles requires further investigation.  相似文献   

14.
It was hypothesized that concentric and eccentric isokinetic muscle actions should yield detectable differences in the mechanomyograms, which may reflect properties of the contraction and relaxation phases of the muscles. A paired pattern classification technique was adapted to determine whether wavelet transformed mechanomyograms from the three superficial quadriceps muscles were different during maximal concentric and eccentric isokinetic muscle actions. Mechanomyograms for this study were recorded from eleven healthy men (mean ± SD age = 20.1 ± 1.1 yrs) who performed maximal concentric and eccentric isokinetic muscle actions of the dominant leg extensors at a velocity of 30° s?1. The results indicated that the paired pattern classification accurately classified the MMG intensity patterns in approximately 94% of the cases as being from a concentric or eccentric movement. Thus, it can be concluded that the differences in the intensity patterns recorded from concentric and eccentric muscle actions were significant. These findings indicated that the combined MMG wavelet analysis and pattern classification techniques could potentially be useful in situations where muscle activity during concentric muscle actions must be distinguished from that during eccentric muscle actions.  相似文献   

15.
Although critical for effective human locomotion and posture, little data exists regarding the segmentation, architecture and contraction time of the human intrinsic foot muscles. To address this issue, the Abductor Hallucis (AH), Abductor Digiti Minimi (ADM), Flexor Digitorum Brevis (FDB) and Extensor Digitorum Brevis (EDB) were investigated utilizing a cadaveric dissection and a non-invasive whole muscle mechanomyographic (wMMG) technique. The segmental structure and architecture of formaldehyde-fixed foot specimens were determined in nine cadavers aged 60–80 years. The wMMG technique was used to determine the contraction time (Tc) of individual muscle segments, within each intrinsic foot muscle, in 12 volunteers of both genders aged between 19 and 24 years.While the pattern of segmentation and segmental –architecture (e.g. fibre length) and –Tc of individual muscle segments within the same muscle were similar, they varied between muscles. Also, the average whole muscle Tc of FDB was significantly (p < 0.05) shorter (faster) (Tc = 58 ms) than in all other foot muscles investigated (ADM Tc = 72 ms, EDB Tc = 72 ms and ABH Tc = 69 ms). The results suggest that the architecture and contraction time of the FDB reflect its unique direct contribution, through toe flexion, to postural stability and the rapid development of ground reaction forces during forceful activities such as running and jumping.  相似文献   

16.
The objective of the study was to determine whether children with cerebral palsy (CP) have abnormal bilateral masseter and temporal muscle activation during mastication. The muscular activity of 32 children aged between 7 and 13 years was assessed during the task of non-habitual mastication by means of surface electromyograms. During non-habitual mastication, the amplitude of all assessed muscles in the inactive period and the amplitude of the Right Masseter and Left Temporal muscles in the active period of children with CP was greater (p < 0.05) in relation to the group of children with Typical Development (TD). Considering each muscle individually, only the duration of the active period of Right Masseter and Right Temporal muscles in children with CP was lower (p < 0.05) than in the TD children. Considering the four analyzed muscles, the duration of time of general active period, when at least one muscle should be activated, was higher in children with CP (p < 0.05) than in children with TD showing greater time variation in inactivation (p < 0.05). The higher muscle activity during the phases of the masticatory cycle, with longer duration of the active period and with greater variability between the muscles to inhibit this activity show greater difficulty in coordinating the muscles of mastication in children with CP compared to children with TD.  相似文献   

17.
The purpose of this study was to examine whether muscle architecture of the long head of biceps femoris (BF) and semitendinosus (ST) muscles varies along their length. The ST and BF muscles were dissected and removed from their origins in eight cadaveric specimens (age range 67.8–73.4 years). One-way analysis of variance designs were used to compare fascicle length (FL), pennation angle (PA) and muscle thickness (MT) between proximal, mid-belly and distal positions. Tendon and muscle length properties were also quantified. For the BF muscle, one-way analysis of variance tests showed a higher PA (23.96 ± 3.82°) and FL (7.12 ± 0.48 cm) proximally than distal positions (PA = 17.78 ± 1.95° and FL = 6.35 ± 0.89 cm, respectively). For the ST, there was a significantly (p < 0.05) lower PA (8.81 ± 1.22°) and FL (13.10 ± 1.54 cm) proximally than distally (PA = 14.69 ± 1.09° and FL = 15.49 ± 2.30 cm, respectively). Muscle thickness significantly increased from distal to more proximal positions (p < 0.05). These data suggest that the ST and BF architecture is not uniform and that measurement of these parameters largely depends on the measurement site. Modeling these muscles by assuming a uniform architecture along muscle length may yield less accurate representation of human hamstring muscle function.  相似文献   

18.
This study aimed to evaluate the validity and test–retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r = 0.74−0.85; P < 0.001) and between EMG activity and submaximal isometric torque (r  0.99; P < 0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from −3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test–retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes.  相似文献   

19.
Acute Kidney Injury (AKI) is frequently encountered in hospitalized patients where it is associated with increased mortality and morbidity notably affecting muscle wasting. Increased protein degradation has been shown to be the main actor of AKI-induced muscle atrophy, but the proteolytic pathways involved are poorly known. The Ubiquitin Proteasome System (UPS) is almost systematically activated in various catabolic situations, and the E3 ligases MuRF1 and MAFbx are generally up regulated in atrophying muscles. We hypothesized that the UPS may be one of the main actors in catabolic skeletal muscles from AKI animals. We used gentamicin-induced acute kidney disease (G-AKI) in rats fed a high protein diet to promote acidosis. We first addressed the impact of G-AKI in the development of mild catabolic conditions. We found that both muscle atrophy and UPS activation were induced with the development of G-AKI. In addition, the phasic muscles were more sensitive to 7-days G-AKI (−11 to −17%, P < 0.05) than the antigravity soleus muscle (−11%, NS), indicating a differential impact of AKI in the musculature. We observed an increased expression of the muscle-specific E3 ligases MuRF1 and MAFbx in phasic muscles that was highly correlated to the G-AKI severity (R2 = 0.64, P < 0.01 and R2 = 0.71, P < 0.005 respectively). Conversely, we observed no variation in the expression of three other E3 ligases (Nedd4, Trim32 and Fbxo30/MUSA1). Altogether, our data indicate that MuRF1 and MAFbx are sensitive markers and potential targets to prevent muscle atrophy during G-AKI.  相似文献   

20.
BackgroundChanges in activation patterns of hip extensors and pelvic stabilizing muscles are recognized as factors that cause low back disorders and these disturbances could have an impact on the physiological loading and alter the direction and magnitude of joint reaction forces.ObjectiveTo investigate activation patterns of the gluteus maximus, semitendinosus and erector spinae muscles with healthy young individuals during four different modalities of therapeutic exercise.MethodsThirty-one volunteers were selected: (16 men and 15 women), age (24.5 ± 3.47 years), body mass of 66.89 ± 11.89 kg and a height of 1.70 ± 0.09 m). They performed four modalities of therapeutic exercise while the electromyographic activity of the investigated muscles was recorded to determine muscle pattern activation for each exercise.ResultsRepeated measure ANOVA revealed that muscle activation patterns were similar for the four analyzed exercises, starting with the semitendinosus, followed by the erector spinae, and then, the gluteus maximus. The gluteus maximus was the last activated muscle during hip extension associated with knee flexion (p < 0.0001), knee extension (p < 0.0001), and with lateral rotation and knee flexion (p < 0.05).ConclusionFindings of the present study suggested that despite individual variability, the muscle firing order was similar for the four therapeutic exercises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号