首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a conservation and sustainable management perspective, we identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba Mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe). We sampled 45 populations throughout the French Pyrenees and eight neighboring reference populations in the Massif Central, Alps, and Corsica. We genotyped 1,620 individuals at three chloroplast and ten nuclear microsatellite loci. We analyzed within‐ and among‐population genetic diversity using phylogeographic reconstructions, tests of isolation‐by‐distance, Bayesian population structure inference, modeling of demographic scenarios, and regression analyses of genetic variables with current and past environmental variables. Genetic diversity decreased from east to west suggesting isolation‐by‐distance from the Alps to the Pyrenees and from the Eastern to the Western Pyrenees. We identified two Pyrenean lineages that diverged from a third Alpine–Corsica–Massif Central lineage 0.8 to 1.1 M years ago and subsequently formed a secondary contact zone in the Central Pyrenees. Population sizes underwent contrasted changes, with a contraction in the west and an expansion in the east. Glacial climate affected the genetic composition of the populations, with the western genetic cluster only observed in locations corresponding to the coldest past climate and highest elevations. The eastern cluster was observed over a larger range of temperatures and elevations. All demographic events shaping the current spatial structure of genetic diversity took place during the Mid‐Pleistocene Transition, long before the onset of the Holocene. The Western Pyrenees lineage may require additional conservation efforts, whereas the eastern lineage is well protected in in situ gene conservation units. Due to past climate oscillations and the likely emergence of independent refugia, east–west oriented mountain ranges may be important reservoir of genetic diversity in a context of past and ongoing climate change in Europe.  相似文献   

2.
Descargues P  Sil AK  Karin M 《The EMBO journal》2008,27(20):2639-2647
IκB kinase α (IKKα), one of the two catalytic subunits of the IKK complex involved in nuclear factor κB (NF-κB) activation, also functions as a molecular switch that controls epidermal differentiation. This unexpected function requires IKKα nuclear translocation but does not depend on its kinase activity, and is independent of NF-κB signalling. Ikkα–/– mice present with a hyperproliferative and undifferentiated epidermis characterized by complete absence of a granular layer and stratum corneum. Ikkα-deficient keratinocytes do not express terminal differentiation markers and continue to proliferate even when subjected to differentiation-inducing stimuli. This antiproliferative function of IKKα is also important for the suppression of squamous cell carcinogenesis. The exact mechanisms by which nuclear IKKα controls keratinocyte proliferation and differentiation remained mysterious for some time. Recent studies, however, have revealed that IKKα is a major cofactor in a TGFβ–Smad2/3 signalling pathway that is Smad4 independent. This pathway controls cell cycle withdrawal during keratinocyte terminal differentiation. Although these are not the only functions of nuclear IKKα, this multifunctional protein is a key regulator of keratinocyte and epidermal differentiation and a critical suppressor of skin cancer.  相似文献   

3.
A number of methods have recently been published that use phylogenetic information extracted from large multiple sequence alignments to detect sites that have changed properties in related protein families. In this study we use such methods to assess functional divergence between eukaryotic EF-1α (eEF-1α), archaebacterial EF-1α (aEF-1α) and two eukaryote-specific EF-1α paralogs—eukaryotic release factor 3 (eRF3) and Hsp70 subfamily B suppressor 1 (HBS1). Overall, the evolutionary modes of aEF-1α, HBS1 and eRF3 appear to significantly differ from that of eEF-1α. However, functionally divergent (FD) sites detected between aEF-1α and eEF-1α only weakly overlap with sites implicated as putative EF-1β or aminoacyl-tRNA (aa-tRNA) binding residues in EF-1α, as expected based on the shared ancestral primary translational functions of these two orthologs. In contrast, FD sites detected between eEF-1α and its paralogs significantly overlap with the putative EF-1β and/or aa-tRNA binding sites in EF-1α. In eRF3 and HBS1, these sites appear to be released from functional constraints, indicating that they bind neither eEF-1β nor aa-tRNA. These results are consistent with experimental observations that eRF3 does not bind to aa-tRNA, but do not support the ‘EF-1α-like’ function recently proposed for HBS1. We re-assess the available genetic data for HBS1 in light of our analyses, and propose that this protein may function in stop codon-independent peptide release.  相似文献   

4.
Tomato Yellow Leaf Curl China virus spreads together with its invasive vector, the silverleaf whitefly B biotype, which exhibits higher growth rates on infected plants. Previous studies indicate that the virus satellite gene βC1 accounts for the visible symptoms of infection and inhibits the constitutive expression of jasmonic acid (JA)—a phytohormone involved in plant defense against whiteflies—and of some JA-regulated genes. Here we present new details of the effects of on plant signaling and defense, obtained with (non-host) transgenic Arabidopsis thaliana and Nicotiana benthamiana plants. We found that JA induction in response to wounding was reduced in plants expressing βC1. This result implies that βC1 acts on conserved plant regulation mechanisms and might impair the entire JA defense pathway. Furthermore, transformed N. benthamiana plants exhibited elevated emissions of the volatile compound linalool, suggesting that βC1 also influences plant-derived olfactory cues available to vector and non-vector insects.  相似文献   

5.
The amount of energy consumed within an average city block is an order of magnitude higher than that consumed in any other ecosystem over a similar area. This is driven by human food inputs, but the consequence of these resources for urban animal populations is poorly understood. We investigated the role of human foods in ant diets across an urbanization gradient in Manhattan using carbon and nitrogen stable isotopes. We found that some—but not all—ant species living in Manhattan''s most urbanized habitats had δ13C signatures associated with processed human foods. In particular, pavement ants (Tetramorium sp. E) had increased levels of δ13C similar to δ13C levels in human fast foods. The magnitude of this effect was positively correlated with urbanization. By contrast, we detected no differences in δ15N, suggesting Tetramorium feeds at the same trophic level despite shifting to human foods. This pattern persisted across the broader ant community; species in traffic islands used human resources more than park species. Our results demonstrate that the degree urban ants exploit human resources changes across the city and among species, and this variation could play a key role in community structure and ecosystem processes where human and animal food webs intersect.  相似文献   

6.
Translation requires the specific attachment of amino acids to tRNAs by aminoacyl-tRNA synthetases (aaRSs) and the subsequent delivery of aminoacyl-tRNAs to the ribosome by elongation factor 1 alpha (EF-1α). Interactions between EF-1α and various aaRSs have been described in eukaryotes, but the role of these complexes remains unclear. To investigate possible interactions between EF-1α and other cellular components, a yeast two-hybrid screen was performed for the archaeon Methanothermobacter thermautotrophicus. EF-1α was found to form a stable complex with leucyl-tRNA synthetase (LeuRS; KD = 0.7 μM). Complex formation had little effect on EF-1α activity, but increased the kcat for Leu-tRNALeu synthesis ~8-fold. In addition, EF-1α co-purified with the archaeal multi-synthetase complex (MSC) comprised of LeuRS, LysRS and ProRS, suggesting the existence of a larger aaRS:EF-1α complex in archaea. These interactions between EF-1α and the archaeal MSC contribute to translational fidelity both by enhancing the aminoacylation efficiencies of the three aaRSs in the complex and by coupling two stages of translation: aminoacylation of cognate tRNAs and their subsequent channeling to the ribosome.  相似文献   

7.
DNA damage activates nuclear Abl tyrosine kinase to stimulate intrinsic apoptosis in cancer cell lines and mouse embryonic stem cells. To examine the in vivo function of nuclear Abl in apoptosis, we generated Abl-μNLS (μ, mutated in nuclear localization signals) mice. We show here that cisplatin-induced apoptosis is defective in the renal proximal tubule cells (RPTC) from the Ablμ/μ mice. When injected with cisplatin, we found similar levels of platinum in the Abl+/+ and the Ablμ/μ kidneys, as well as similar initial inductions of p53 and PUMAα expression. However, the accumulation of p53 and PUMAα could not be sustained in the Ablμ/μ kidneys, leading to reductions in renal apoptosis and tubule damage. Co-treatment of cisplatin with the Abl kinase inhibitor, imatinib, reduced the accumulation of p53 and PUMAα in the Abl+/+ but not in the Ablμ/μ kidneys. The residual apoptosis in the Ablμ/μ mice was not further reduced in the Ablμ/μ; p53−/− double-mutant mice, suggesting that nuclear Abl and p53 are epistatic to each other in this apoptosis response. Although apoptosis and tubule damage were reduced, cisplatin-induced increases in phospho-Stat-1 and blood urea nitrogen were similar between the Abl+/+ and the Ablμ/μ kidneys, indicating that RPTC apoptosis is not the only factor in cisplatin-induced nephrotoxicity. These results provide in vivo evidence for the pro-apoptotic function of Abl, and show that its nuclear localization and tyrosine kinase activity are both required for the sustained expression of p53 and PUMAα in cisplatin-induced renal apoptosis.  相似文献   

8.
While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3α or GSK-3β. In contrast, depletion of GSK-3β, but not GSK-3α, sensitized PDA cell lines to TNFα-induced cell death. Further experiments demonstrated that TNFα-stimulated IκBα phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3β-deficient MEFs. Nonetheless, inhibition of GSK-3β function in MEFs or PDA cell lines impaired the expression of the NF-κB target genes Bcl-xL and cIAP2, but not IκBα. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3β targeted to the nucleus but not GSK-3β targeted to the cytoplasm, suggesting that GSK-3β regulates NF-κB function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3β overexpression and nuclear localization contribute to TNFα and TRAIL resistance via anti-apoptotic NF-κB genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.  相似文献   

9.
The Algarve Region (AR) in southern Portugal, which is an international tourist destination, has been considered an endemic region of zoonotic leishmaniasis caused by Leishmania infantum since the 1980s. In the present study, phlebotomine and canine surveys were conducted to identify sandfly blood meal sources and to update the occurrence of Leishmania infection in vectors and dogs. Four sandfly species were captured: Phlebotomus perniciosus, Phlebotomus ariasi, Phlebotomus sergenti and Sergentomyia minuta. In one P. perniciosus female, L. infantum DNA was detected. Blood meal tests showed that this species had no host preferences and was an opportunistic feeder. An overall canine leishmaniasis (CanL) seroprevalence of 16.06% was found; the seroprevalence was 3.88% in dogs housed in kennels and 40.63% in dogs that attended veterinary clinics. The simultaneous occurrence of dogs and P. perniciosus infected with L. infantum in the AR indicates that the region continues to be an endemic area for CanL. Our results reinforce the need for the systematic spatial distribution of phlebotomine populations and their Leishmania infection rates and the need to simultaneously perform pathogen monitoring in both invertebrate and vertebrate hosts to investigate the transmission, distribution and spreading of Leishmania infection.  相似文献   

10.
Epithelial sodium channel (ENaC) is a Na+-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na+ absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleosts. We studied full-length cDNA cloning and tissue distributions of ENaCα, β and γ subunits in the Australian lungfish, Neoceratodus forsteri, which is the closest living relative of tetrapods. Neoceratodus ENaC (nENaC) comprised three subunits: nENaCα, β and γ proteins. The nENaCα, β and γ subunits are closely related to amphibian ENaCα, β and γ subunits, respectively. Three ENaC subunit mRNAs were highly expressed in the gills, kidney and rectum. Amiloride-sensitive sodium current was recorded from Xenopus oocytes injected with the nENaCαβγ subunit complementary RNAs under a two-electrode voltage clamp. nENaCα immunoreactivity was observed in the apical cell membrane of the gills, kidney and rectum. Thus, nENaC may play a role in regulating sodium transport of the lungfish, which has a renin–angiotensin–aldosterone system. This is interesting because there may have been an ENaC sodium absorption system controlled by aldosterone before the conquest of land by vertebrates.  相似文献   

11.
Electron microscopy and single-particle averaging were performed on isolated reaction centre (RC)—antenna complexes (RC–LH1–PufX complexes) of Rhodobaca bogoriensis strain LBB1, with the aim of establishing the LH1 antenna conformation, and, in particular, the structural role of the PufX protein. Projection maps of dimeric complexes were obtained at 13 Å resolution and show the positions of the 2 × 14 LH1 α- and β-subunits. This new dimeric complex displays two open, C-shaped LH1 aggregates of 13 αβ polypeptides partially surrounding the RCs plus two LH1 units forming the dimer interface in the centre. Between the interface and the two half rings are two openings on each side. Next to the openings, there are four additional densities present per dimer, considered to be occupied by four copies of PufX. The position of the RC in our model was verified by comparison with RC–LH1–PufX complexes in membranes. Our model differs from previously proposed configurations for Rhodobacter species in which the LH1 ribbon is continuous in the shape of an S, and the stoichiometry is of one PufX per RC.  相似文献   

12.
13.
Glutathione-dependent enzymes play important protective, repair, or metabolic roles in cells. In particular, enzymes in the glutathione S-transferase (GST) superfamily function in stress responses, defense systems, or xenobiotic detoxification. Here, we identify novel features of bacterial GSTs that cleave β-aryl ether bonds typically found in plant lignin. Our data reveal several original features of the reaction cycle of these GSTs, including stereospecific substrate recognition and stereoselective formation of β-S-thioether linkages. Products of recombinant GSTs (LigE, LigP, and LigF) are β-S-glutathionyl-α-keto-thioethers that are degraded by a β-S-thioetherase (LigG). All three Lig GSTs produced the ketone product (β-S-glutathionyl-α-veratrylethanone) from an achiral side chain-truncated model substrate (β-guaiacyl-α-veratrylethanone). However, when β-etherase assays were conducted with a racemic model substrate, β-guaiacyl-α-veratrylglycerone, LigE- or LigP-catalyzed reactions yielded only one of two potential product (β-S-glutathionyl-α-veratrylglycerone) epimers, whereas the other diastereomer (differing in configuration at the β-position (i.e. its β-epimer)) was produced only in the LigF-catalyzed reaction. Thus, β-etherase catalysis causes stereochemical inversion of the chiral center, converting a β(R)-substrate to a β(S)-product (LigE and LigP), and a β(S)-substrate to a β(R)-product (LigF). Further, LigG catalyzed glutathione-dependent β-S-thioether cleavage with β-S-glutathionyl-α-veratrylethanone and with β(R)-configured β-S-glutathionyl-α-veratrylglycerone but exhibited no or significantly reduced β-S-thioether-cleaving activity with the β(S)-epimer, demonstrating that LigG is a stereospecific β-thioetherase. We therefore propose that multiple Lig enzymes are needed in this β-aryl etherase pathway in order to cleave the racemic β-ether linkages that are present in the backbone of the lignin polymer.  相似文献   

14.
15.
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.  相似文献   

16.
Kevin C. Roach  Joseph Heitman 《Genetics》2014,198(3):1059-1069
Cryptococcus neoformans is a pathogenic basidiomycetous fungus that engages in outcrossing, inbreeding, and selfing forms of unisexual reproduction as well as canonical sexual reproduction between opposite mating types. Long thought to be clonal, >99% of sampled environmental and clinical isolates of C. neoformans are MATα, limiting the frequency of opposite mating-type sexual reproduction. Sexual reproduction allows eukaryotic organisms to exchange genetic information and shuffle their genomes to avoid the irreversible accumulation of deleterious changes that occur in asexual populations, known as Muller’s ratchet. We tested whether unisexual reproduction, which dispenses with the requirement for an opposite mating-type partner, is able to purge the genome of deleterious mutations. We report that the unisexual cycle can restore mutant strains of C. neoformans to wild-type genotype and phenotype, including prototrophy and growth rate. Furthermore, the unisexual cycle allows attenuated strains to purge deleterious mutations and produce progeny that are returned to wild-type virulence. Our results show that unisexual populations of C. neoformans are able to avoid Muller’s ratchet and loss of fitness through a unisexual reproduction cycle involving α-α cell fusion, nuclear fusion, and meiosis. Similar types of unisexual reproduction may operate in other pathogenic and saprobic eukaryotic taxa.  相似文献   

17.
Procaspase-activating compound-1 (PAC-1) is the first direct caspase-activating compound discovered; using an in vitro cell-free system of caspase activation. Subsequently, this compound was shown to induce apoptosis in a variety of cancer cells with promising in vivo antitumor activity in canine lymphoma model. Recently, we have reported its ability to kill drug-resistant, Bcl-2/Bcl-xL overexpressing and Bax/Bak-deficient cells despite the essential requirement of mitochondrial cytochrome c (cyt. c) release for caspase activation, indicating that the key molecular targets of PAC-1 in cancer cells are yet to be identified. Here, we have identified Ero1α-dependent endoplasmic reticulum (ER) calcium leakage to mitochondria through mitochondria-associated ER membranes (MAM) and ER luminal hyper-oxidation as the critical events of PAC-1-mediated cell death. PAC-1 treatment upregulated Ero1α in multiple cell lines, whereas silencing of Ero1α significantly inhibited calcium release from ER and cell death. Loss of ER calcium and hyper-oxidation of ER lumen by Ero1α collectively triggered ER stress. Upregulation of GRP78 and splicing of X-box-binding protein 1 (XBP1) mRNA in multiple cancer cells suggested ER stress as the general event triggered by PAC-1. XBP1 mRNA splicing and GRP78 upregulation confirmed ER stress even in Bax/Bak double knockout and PAC-1-resistant Apaf-1-knockout cells, indicating an induction of ER stress-mediated mitochondrial apoptosis by PAC-1. Furthermore, we identified BH3-only protein p53 upregulated modulator of apoptosis (PUMA) as the key molecular link that orchestrates overwhelmed ER stress to mitochondria-mediated apoptosis, involving mitochondrial reactive oxygen species, in a p53-independent manner. Silencing of PUMA in cancer cells effectively reduced cyt. c release and cell death by PAC-1.  相似文献   

18.
Background and Aims Sorbus domestica (Rosaceae) is one of the rarest deciduous tree species in Europe and is characterized by a scattered distribution. To date, no large-scale geographic studies on population genetics have been carried out. Therefore, the aims of this study were to infer levels of molecular diversity across the major part of the European distribution of S. domestica and to determine its population differentiation and structure. In addition, spatial genetic structure was examined together with the patterns of historic and recent gene flow between two adjacent populations.Methods Leaf or cambium samples were collected from 17 populations covering major parts of the European native range from north-west France to south-east Bulgaria. Seven nuclear microsatellites and one chloroplast minisatellite were examined and analysed using a variety of methods.Key Results Allelic richness was unexpectedly high for both markers within populations (mean per locus: 3·868 for nSSR and 1·647 for chloroplast minisatellite). Moreover, there was no evidence of inbreeding (mean Fis = –0·047). The Italian Peninsula was characterized as a geographic region with comparatively high genetic diversity for both genomes. Overall population differentiation was moderate (FST = 0·138) and it was clear that populations formed three groups in Europe, namely France, Mediterranean/Balkan and Austria. Historic gene flow between two local Austrian populations was high and asymmetric, while recent gene flow seemed to be disrupted.Conclusions It is concluded that molecular mechanisms such as self-incompatibility and high gene flow distances are responsible for the observed level of allelic richness as well as for population differentiation. However, human influence could have contributed to the present genetic pattern, especially in the Mediterranean region. Comparison of historic and recent gene flow may mirror the progress of habitat fragmentation in eastern Austria.  相似文献   

19.
20.
We have further characterized at the single channel level the properties of epithelial sodium channels formed by coexpression of α with either wild-type β or γ subunits and α with carboxy-terminal truncated β (βT) or γ (γT) subunits in Xenopus laevis oocytes. αβ and αβT channels (9.6 and 8.7 pS, respectively, with 150 mM Li+) were found to be constitutively open. Only upon inclusion of 1 μM amiloride in the pipette solution could channel activity be resolved; both channel types had short open and closed times. Mean channel open probability (P o) for αβ was 0.54 and for αβT was 0.50. In comparison, αγ and αγT channels exhibited different kinetics: αγ channels (6.7 pS in Li+) had either long open times with short closings, resulting in a high P o (0.78), or short openings with long closed times, resulting in a low P o (0.16). The mean P o for all αγ channels was 0.48. αγT (6.6 pS in Li+) behaved as a single population of channels with distinct kinetics: mean open time of 1.2 s and closed time of 0.4 s, with a mean P o of 0.6, similar to that of αγ. Inclusion of 0.1 μM amiloride in the pipette solution reduced the mean open time of αγT to 151 ms without significantly altering the closed time. We also examined the kinetics of amiloride block of αβ, αβT (1 μM amiloride), and αγT (0.1 μM amiloride) channels. αβ and αβT had similar blocking and unblocking rate constants, whereas the unblocking rate constant for αγT was 10-fold slower than αβT. Our results indicate that subunit composition of ENaC is a main determinant of P o. In addition, channel kinetics and P o are not altered by carboxy-terminal deletion in the β subunit, whereas a similar deletion in the γ subunit affects channel kinetics but not P o.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号