首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method of enhanced extraction genistein from pigeon pea [Cajanus cajan (L.) Millsp.] roots with the biotransformation of immobilized edible Aspergillus oryzae and Monacus anka, was investigated. It showed that immobilized Aspergillus oryzae and Monacus anka on sodium alginate effectively supported the highest genistein extraction yield by screening microorganism tests. After biotransformation process with immobilized Aspergillus oryzae and Monacus anka under 30 °C, pH 6.0, 2 days, liquid-solid ratio 12: 1 (mL/g), the extraction yield of genistein reached 1.877 mg/g, which was 2.65-fold to that of normal extraction yield. Moreover, IC50 values of the extracts measured by DPPH-radical scavenging test and β-Carotene-linoleic acid bleaching test were 0.737 mg/mL and 0.173 mg/mL (control sample 1.117 mg/mL and 0.216 mg/mL), respectively. SOD (Super Oxygen Dehydrogenises) activity of the extracts treated with immobilized microorganism which was stronger than that of the untreated pigon pea roots (1.44 U/mg) at the concentration of protein (0.9375 μg/mL) was 1.83 U/mg. The developed method could be an alternative method for the enhanced extraction of genistein from plants and could be potentially applied in the food industry  相似文献   

2.
The synthesis of chitosan (Chs) and chitin (Chi) copolymer and grafting of acrylamide (AAm) onto the synthesized copolymer have been carried out by chemical methods. The grafted copolymer was characterized by FTIR, SEM and XRD. The extracellular cutinase of Aspergillus sp. RL2Ct (E.C. 3.1.1.3) was purified to 4.46 fold with 16.1% yield using acetone precipitation and DEAE sepharose ion exchange chromatography. It was immobilized by adsorption on the grafted copolymer. The immobilized enzyme was found to be more stable then the free enzyme and has a good binding efficiency (78.8%) with the grafted copolymer. The kinetic parameters KM and Vmax for free and immobilized cutinase were found to be 0.55 mM and 1410 μmol min−1 mg−1 protein, 2.99 mM and 996 μmol min−1 mg−1 protein, respectively. The immobilized cutinase was recycled 64 times without considerable loss of activity. The matrix (Chs-co-Chi-g-poly(AAm)) prepared and cutinase immobilized on the matrix have potential applications in enzyme immobilization and organic synthesis respectively.  相似文献   

3.
《Process Biochemistry》2007,42(6):925-933
The influence of organic acids on growth and dithiolopyrrolone antibiotic production by Saccharothrix algeriensis NRRL B-24137 was studied. The production of dithiolopyrrolones depends upon the nature and concentration of the organic acids in the culture medium. Study of the nature of organic acids showed that the most effective organic acids for thiolutin specific production were maleic, 4-hydroxybenzoic, benzentetracarboxylic, pantothenic, pivalic and pyruvic acids (which yielded almost five-fold over the starting medium) and pimelic acid (more than three-fold). 4-Bromobenzoic acid showed the best production of senecioyl-pyrrothine (59 mg g−1 DCW). Tiglic acid showed the best production of tigloyl-pyrrothine (22 mg g−1 DCW). The highest yield of isobutyryl-pyrrothine (7.6 mg g−1 DCW) was observed in the presence of crotonic acid. Sorbic acid yielded the best production of butanoyl-pyrrothine (26 mg g−1 DCW). Methacrylic, butyric, pyruvic and 4-bromobenzoic acids also exhibited the best production of butanoyl-pyrrothine (27–11-fold).Study of organic acid concentration showed that among the selected organic acids, pimelic acid yielded the highest specific production of thiolutin (91 mg g−1 DCW) at 7.5 mM; and senecioyl-pyrrothine (11 mg g−1 DCW), tigloyl-pyrrothine (9 mg g−1 DCW) and butanoyl-pyrrothine (3.5 mg g−1 DCW) at 5 mM. Pyruvic acid at 1.25 mM enhanced the production of senecioyl-pyrrothine (4.3 mg g−1 DCW). The maximum production of tigloyl-pyrrothine (18.6 mg g−1 DCW) was observed in the presence of tiglic acid at 2.5 mM. Maximum production of isobutyryl-pyrrothine was observed in the presence of 7.5 mM tiglic acid. In addition, methacrylic acid (at 5 mM) and butyric acid (at 2.5 mM) enhanced the production of butanoyl-pyrrothine (26 and 20 times, respectively).The above results can be employed in the optimisation of the culture medium for the production of dithiolopyrrolone in higher quantities.  相似文献   

4.
Thermobifida fusca not only produces cellulases, hemicellulases and xylanases, but also excretes butyric acid. In order to achieve a high yield of butyric acid, the effect of different carbon sources: mannose, xylose, lactose, cellobiose, glucose, sucrose and acetates, on butyric acid production was studied. The highest yield of butyric acid was 0.67 g/g C (g-butyric acid/g-carbon input) on cellobiose. The best stir speed and aeration rate for butyric acid production were found to be 400 rpm and 2 vvm in a 5-L fermentor. The maximum titer of 2.1 g/L butyric acid was achieved on 9.66 g/L cellulose. In order to test the production of butyric acid on lignocellulosic biomass, corn stover was used as the substrate, on which there was 2.37 g/L butyric acid produced under the optimized conditions. In addition, butyric acid synthesis pathway was identified involving five genes that catalyzed reactions from acetyl-CoA to butanoyl-CoA in T. fusca.  相似文献   

5.
The main objective of this work was to study the enzymatic synthesis of short chain ethyl esters, a group of relevant aroma molecules, by Fusarium solani pisi cutinase in an organic solvent media (iso-octane), and to assess the influence of different parameters on the reaction yield.Cutinase displayed high initial esterification rates in iso-octane, which amounted to 1.15 μmol min−1 mg−1 for ethyl butyrate (C4 acid chain) and 1.06 μmol min−1 mg−1 for ethyl valerate (C5 acid chain). High product yields, 84% for ethyl butyrate and 96% for ethyl valerate, were observed after 6 h of reaction, for an initial equimolar concentration of substrates (0.1 M).The highest product yield (97%) was observed for ethyl caproate (C6) synthesis, a compound which is a part of natural apple and pineapple flavour, for an alcohol:acid molar ratio of 2 (0.2 M ethanol concentration).Cutinase affinity for short chain length carboxylic acids (C4–C6) in ester synthesis in iso-octane confirmed previous observations in reversed micellar system.  相似文献   

6.
Four-week old plants of chamomile (Matricaria chamomilla) cultivated in nutrient solution were exposed to copper (3, 60 and 120 μM) for 10 days. At 120 μM, Cu decreased dry mass production, water, chlorophyll and nitrogen content in both the leaf rosettes and roots. Five phenolic acids were detected in methanol extracts of the leaf rosettes (protocatechuic, p-hydroxybenzoic, vanillic, chlorogenic and salicylic acid) and six additional compounds (gentisic, syringic, caffeic, sinapic and o-/p-coumaric acid) were released after acid hydrolysis. Most of the 11 phenolic acids detected increased in 60 μM Cu but in the 120 μM treatment their contents were lower or not significantly different from the control. Among coumarin-related compounds, (Z)- and (E)-2-ß-d-glucopyranosyloxy-4-methoxycinnamic acids increased in 60 and 120 μM Cu while herniarin rose in the 3 and 60 μM Cu by the end of the experiment. The amounts of umbelliferone were not affected by any of the doses tested. These facts in relation to antioxidative properties of phenolic metabolites are also discussed. The malondialdehyde content of the leaf rosettes was not affected by exposure of plants to 120 μM Cu in a time-course experiment but in the roots a sharp increase was observed after 24 and 48 h of treatment. At 120 μM, Cu stimulated a 9-fold higher K+ loss than the 60 μM treatment while at the lowest concentration it stimulated potassium uptake. Cu accumulation in the roots was 3-, 49- and 71-fold higher than that in the leaf rosettes in the 3, 60, and 120 μM Cu treatments, respectively. Results suggest that 120 μM Cu dose is limiting for chamomile growth under the conditions of present research.  相似文献   

7.
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8 g/L vs. 19.4 g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28 g/L·h vs. 0.16 g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53 g/L·h vs. 0.26 g/L·h) and yield (0.32 g/g vs. 0.28 g/g). When the initial total sugar concentration was ~120 g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4 g/L, yield of 0.43 g/g sugar consumed, productivity of 0.87 g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass.  相似文献   

8.
A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta, buk, ctfB and adhE1) at pH 6.0 resulted in the production of 32.5 g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3 g/g from 83.3 g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5 g/g) obtained with the HYCBEKW strain (pta, buk, ctfB, adhE1 and hydA) was 1.6 times higher than that (18.2 g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum.  相似文献   

9.
《Mycological Research》2007,111(2):232-239
A genetic map was constructed previously from a cross between Magnaporthe oryzae isolates 84R-62B and Y93-245c-2, and genetic markers closely linked to the cultivar-specific avirulence (Avr) gene, AvrPik, were assigned to a 1.6 Mb small chromosome of 84R-62B that is absent from Y93-245c-2. In the present study, the 1.6 Mb chromosome was characterized by using contour-clamped homogeneous electric fields (CHEF) electrophoresis and hybridization analysis. CHEF electrophoresis analysis showed that the 1.6 Mb chromosome was inherited in Mendelian fashion, and co-segregated with AvrPik. Southern hybridization analysis revealed that the 1.6 Mb chromosome carried sequences only distributed to the supernumerary chromosome in M. oryzae isolates, as well as sequences corresponding to those in the supercontig 17 of chromosome 1 in the M. grisea database. Thus, we conclude that the Mendelian 1.6 Mb chromosome is a chimera containing sequences from chromosome 1 and from supernumerary chromosomes in M. oryzae.  相似文献   

10.
The genes encoding expanin-like proteins from Trichoderma reesei (TrSwo1) and Bacillus subtilis (BsEXLX1) were successfully expressed in Pichia pastoris. The yields of two recombinant proteins were significantly improved by the use of PMSF (phenylmethylsulfonyl fluoride) and a commercial protease inhibitor cocktail. Under the optimum culture conditions, the highest TrSwo1/BsEXLX1 expression level reached was approximately 120/860 mg l−1, which was almost 2.4/86-fold as much as the highest expression level in other host cells. Purified BsEXLX1/TrSwo1 displayed synergism in cellulose hydrolysis with endoglucanase, and the maximum amount of reducing sugars released was almost 2.0/2.5-fold as high as those in reaction mixtures without expansin-like proteins. The synergistic effect reached the maximum level when 1 mg of target protein per g of filter paper was loaded. Both proteins exhibited relatively high thermal stability at temperatures of 50, 70 and 90 °C, and retained more than 45% residual activities after 1 h of pre-incubation at 100 °C, suggesting remarkable heat tolerance. They also showed resistance to denaturation by urea and SDS. Under several enzymatic hydrolysis conditions, the synergistic activity of TrSwo1 was higher than that of BsEXLX1, indicating stronger disrupting activity of TrSwo1 on cellulose than BsEXLX1. This is the first study to report high-efficient expression and unreported properties of BsEXLX1/TrSwo1.  相似文献   

11.
Natamycin is an important tetraene (polyene) antibiotic produced in submerged culture by different strains of Streptomyces sp. In the present work, the effects of the addition of short-chain carboxylic acids (acetic, propionic and butyric) on cell growth and the kinetics of natamycin production were investigated during submerged cultivation of Streptomyces natalensis. The addition of acetic and propionic acids showed stimulatory effects on natamycin production when added to the fermentation medium at concentrations below 2 g L?1 at the beginning of cultivation. In addition, when acetic and propionic acids were added in a mixture (7:1) at a total concentration of 2 g L?1, antibiotic production increased significantly, reaching 3.0 g L?1 (approximately 223% and 250% increases in volumetric and specific antibiotic production, respectively, compared with the control culture). Moreover, the addition of carboxylic acids not only increased the antibiotic yield but also decreased the production time from 96 h to only 84 h in shake-flask cultures. A further enhancement in natamycin production was achieved by cultivation in a 2-L stirred-tank bioreactor under controlled pH conditions. The maximum volumetric production of 3.98 g L?1 was achieved after 84 h in carboxylic acid-supplemented culture (acetate and propionate in a ratio of 7:1).  相似文献   

12.
Silages from pineapple peel, sweet corn husk and cob mixed with bagasse and vinasse were evaluated to determine their chemical composition and fermentation characteristics as well as feeding performance in fattening steers. The experiment, which lasted 90 days, involved 48 fattening steers (264 ± 37.4 kg BW) randomly allocated to three diets. Treatments included: a control diet containing rice straw and molasses (T1); diet containing bagasse–vinasse mixture including sweet corn husk and cob silage (BS; T2); and diet containing bagasse–vinasse mixture including pineapple peel silage (BP; T3). All treatments included a commercial concentrate feed (13% CP) and ad libitum rice straw throughout the experiment. Results from chemical analysis showed that dry matter (DM) of BS was higher than BP (P < 0.05), whereas the protein content of BS and BP was similar (P > 0.05). For fermentation characteristics, pH in BP was lower than BS (P < 0.05); in addition, acetic and butyric acids in BS were higher than BP (P < 0.05). Findings from growth trial showed that total DM intake in steers fed T1 was higher compared to the other dietary treatments (P < 0.05), whereas the average BW gain was found to be grater in T3 steers (P < 0.05). As result from our findings, bagasse–vinasse mixture with pineapple peel silage appeared to be a viable feed ingredient in fattening steer diet and moreover it could become an economically feasible agro-industrial by-product for farmers.  相似文献   

13.
A simple and effective preparation of lipases for use in organic solvents is hereby proposed. Lipases in aqueous solution were treated with isopropanol, immediately followed by immobilization onto a commercially available macroporous resin CRBO2 (crosslinked polystyrene with N-methylglucamine as a functional group). The dual modification of lipases by (1) isopropanol treatment and (2) immobilization improved the activity and stability of lipases more significantly than either of the two treatments alone. The degree of lipase activation was dependent on isopropanol–buffer (v/v) ratio and the source of lipase used. Among the lipases tested, Rhizopus oryzae lipase was more significantly activated. The maximum specific activity of R. oryzae lipase after dual modification was 94.9 mmol h−1 g−1, which was, respectively, 3.3-, 2.5- and 1.5-fold of untreated free, untreated immobilized and treated free lipases. The conformations of the treated and untreated free lipases were investigated by circular dichroism (CD) measurement. Changes in the far- and near-UV CD spectra of lipase indicate that lipase activation is accompanied by changes in secondary and tertiary structures of lipases. The increase in negative molar elipticity at 222 nm suggests that the α-helical content of lipase increase after pretreatment.  相似文献   

14.
《Process Biochemistry》2007,42(9):1342-1347
Recombinant Aeromonas hydrophila 4AK4 harboring phbA and phbB (phaAB) genes encoding β-ketothiolase and acetoacetyl-CoA reductase of Ralstonia eutropha produced a terpolyester of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) [P(3HB-co-3HV-co-3HHx)] from mixtures of dodecanoic acid and propionic acid. Depending on the concentration of propionic acid in bacterial cultures, cell growth represented by cellular dry weight (CDW), P(3HB-co-3HV-co-3HHx) contents in dry cells and 3HV molar percentage in the terpolyester ranged from 0.43 g l−1 to 3.29 g l−1, 20.7% to 35.6%, 2.3 mol% to 7.1 mol%, respectively. Number average molecular (Mn) weights of the terpolyesters were 303,000–800,000, independent from monomer fraction content. This terpolyester was characterized by nuclear magnetic resonance (NMR), gel-permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and stress–strain measurement studies. Results showed that the terpolyester had higher thermal stability and elongation at break compared with that of homopolymer poly(3-hydroxybutyrate) (PHB) and its copolymers P(3HB-co-5 mol%3HV) or P(3HB-co-12 mol%3HHx). In addition, the terpolyester had lower melting (Tm) temperatures and enthalpy of fusions (ΔHm) than PHB did.  相似文献   

15.
This work presents here a new fundamental strategy for bio-converting Kraft lignin (KL) into useful products. Cupriavidus basilensis B-8 (here after B-8) was able to use KL as the sole carbon source. Fully 41.5% of lignin, 37.7% of total carbon (TC) and 43.0% of color were removed after 7 days of incubation. At the same time, lignin was depolymerized into small fragments, which was confirmed by scanning electron microscopy (SEM) and gel permeation chromatography (GPC). Bacterial biomass accumulated to 735.6 mg/L at the initial KL concentration of 5 g L−1, and the corresponding volumetric productivity of polyhydroxyalkanoate (PHA) was 128 mg/L. PHA productivity was significantly improved through fed batch fermentation and reached to 319.4 mg/L. GC–MS analysis showed that PHA polymer was composed of three basic monomers: 98.3 mol% of (S)-3-hydroxy-butanoic acid (S3HB), 1.3 mol% of ®-3-hydroxybutyric acid (R3HB) and 0.4 mol% of 3-hydroxy-butanoic acid (3HB).  相似文献   

16.
Docosahexaenoic acid (DHA) is an important polyunsatured fatty acid (PUFA) which can be purified from tuna fish oil fatty acids by selective enzymatic esterification. The present paper investigates the kinetic study for selective esterification of tuna fish oil fatty acids with butanol catalyzed by Rhizopus oryzae lipase (ROL) in biphasic solvent system. Under the most suitable reaction conditions, 76.2% esterification was achieved in 24 h. Different kinetic models for esterification given by Segel [1], Oliveira et al. [2], Gogoi et al. [3], and Kraai et al. [4] were tested for fitting the esterification data and the model given by Oliveira et al. [2] was found to be most suitable. The model given by Prazeres et al. [5] for hydrolysis was also tested for esterification and the model with second order product inhibition was found to provide better match between the predicted and experimental values than that of model by Oliveira et al. [2]. The kinetic model was fitted using MATLAB® to determine the best kinetic parameters. The average value of kinetic constants using the model given by Prazeres et al. were estimated as Km = 23.6 μmoles FFA/ml, Ki1 = 4.6 × 10−5 μmoles FFA/mg enzyme h, Ki2 = 0.0062 μmoles FFA/mg enzyme h and K2 = 149.5 μmoles FFA/mg enzyme h.  相似文献   

17.
Novel ampelopsin glucosides (AMPLS-Gs) were enzymatically synthesized and purified using a Sephadex LH-20 column. Each structure of the purified AMPLS-Gs was determined by nuclear magnetic resonance, and the ionic product of AMPLS-G1 was observed at m/z 505 (C21H22O13·Na)+ using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. AMPLS-G1 was identified as ampelopsin-4′-O-α-d-glucopyranoside. The optimum condition for AMPLS-G1, determined using response surface methodology, was 70 mM ampelopsin, 150 mM sucrose, and 1 U/mL dextransucrase, which resulted in an AMPLS-G1 yield of 34 g/L. The purified AMPLS-G1 displayed 89-fold increased water solubility and 14.5-fold browning resistance compared to those of AMPLS and competitive inhibition against tyrosinase with a Ki value of 40.16 μM. This value was smaller than that of AMPLS (Ki = 62.56 μM) and much smaller than that of β-arbutin (Ki = 514.84 μM), a commercial active ingredient of whitening cosmetics. These results indicate the potential of AMPLS and AMPLS-G1 as superior ingredients for functional cosmetics.  相似文献   

18.
Twelve four-month old Suffolk × Small-tail-Han male sheep (live weight 21–26 kg), fitted with rumen and abomasum fistulas and nourished by total intragastric infusions, were used to study the relationship between the volatile fatty acids (VFA) supply and the nitrogen (N) retention in sheep. The animals were randomly divided into four groups and four levels of mixed VFA energy (the molar proportion of acetic acid, propionic acid and butyric acid was 65:25:10), i.e. 333, 378, 423 and 468 kJ kg?1 W0.75 d?1, were infused into the rumen, as treatments I, II, III and IV, respectively. The results showed that the N retention was significantly increased (P < 0.05) with the VFA infusion level. Significant regression relationship was found between the VFA supply (x, g d?1) and the N retention (y, mg d?1): y = 2.75x ? 403, r2 = 0.86, n = 12, P < 0.01. It was concluded that to get efficient utilization of dietary N and high N retention in sheep, it is necessary to supply enough dietary energy.  相似文献   

19.
Recently we reported on raw-starch-digesting ability of alpha-amylase from an insect Sitophilus oryzae (SoAMY) expressed in recombinant Yarrowia lipolytica cells, and demonstrated its usefulness in simultaneous saccharification and fermentation processes with industrial yeasts. In this study we applied fed-batch cultures of Y. lipolytica 4.29 strain reaching high-cell-densities (up to 70 [gDCW/L]), to enhance SoAMY production. SoAMY activity in the medium reached the peak value of 22,979.23 ± 184 [AU/L], at volumetric productivity of 121.58 ± 1.75 [AU/L/h], and yield of 71.83 ± 3.08 [AU/gglycerol], constituting roughly 160-fold improvement, compared to the best previous result. The cultivations were accompanied by high production of erythritol (83.58 [g/L]), at the marginal production of mannitol (5.46 [g/L]). Elementary analyses of media constituents, the enzyme and the yeast biomass gave better insight into carbon and nitrogen fluxes distribution. Due to application of genetic engineering and bioprocess engineering strategies, the insect-derived enzyme can be produced at the quantities competitive to microbial catalysts.  相似文献   

20.
Triacylglycerols (TAG) enriched with medium chain fatty acids (M) present specific nutritional, energetic and pharmaceutical properties. Structured lipids (SL) were produced by acidolysis between virgin olive oil and caprylic (C8:0) or capric (C10:0) acids in solvent-free media, catalyzed by the main extracellular lipase from Yarrowia lipolytica lipase 2 (YLL2), immobilized in Accurel MP 1000. Response surface methodology was used for modeling and optimization of the reaction conditions catalyzed by immobilized YLL2. Central composite rotatable designs were performed as a function of the reaction time (2.5–49.5 h) and the molar ratio of medium chain fatty acid/TAG (MR; 0.6–7.4), for both acids, and also of temperature (32–48 ̊C) for C8:0 experiments. As for capric acid, the incorporation of caprylic acid in olive oil showed not to depend of the temperature, within the tested range. The response surfaces, fitted to the experimental data, were described by a first-order polynomial equation, for C8:0 incorporation, and by a second-order polynomial equation for C10:0 incorporation. Under optimized conditions (48 h reaction at 40 ̊C, with a molar ratio of 2:1 M/TAG) the highest incorporation was reached for C8:0 (25.6 mol%) and C10:0 (21.3 mol%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号