首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leptin and adiponectin play an essential role in energy metabolism. Leptin has also been proposed as a marker for monitoring training load. So far, no studies have investigated the variability of these hormones in athletes and how they are regulated during cumulative exercise. This study monitored leptin and adiponectin in 15 endurance athletes twice daily in the days before, during and after a 9-day simulated cycling stage race. Adiponectin significantly increased during the race (p = 0.001) and recovery periods (p = 0.002) when compared to the baseline, while leptin decreased significantly during the race (p < 0.0001) and returned to baseline levels during the recovery period. Intra-individual variability was substantially lower than inter-individual variability for both hormones (leptin 34.1 vs. 53.5%, adiponectin 19% vs. 37.2%). With regards to exercise, this study demonstrated that with sufficient, sustained energy expenditure, leptin concentrations can decrease within the first 24 hours. Under the investigated conditions there also appears to be an optimal leptin concentration which ensures stable energy homeostasis, as there was no significant decrease over the subsequent race days. In healthy endurance athletes the recovery of leptin takes 48-72 hours and may even show a supercompensation-like effect. For adiponectin, significant increases were observed within 5 days of commencing racing, with these elevated values failing to return to baseline levels after 3 days of recovery. Additionally, when using leptin and adiponectin to monitor training loads, establishing individual threshold values improves their sensitivity.  相似文献   

2.
Circulating adiponectin is reduced in disorders associated with insulin resistance. This study was conducted to determine whether an exercise/diet intervention would alter adiponectin multimer distribution and adiponectin receptor expression in skeletal muscle. Impaired glucose-tolerant older (>60 yr) obese (BMI 30-40 kg/m(2)) men (n = 7) and women (n = 14) were randomly assigned to 12 wk of supervised aerobic exercise combined with either a hypocaloric (ExHypo, approximately 500 kcal reduction, n = 11) or eucaloric diet (ExEu, n = 10). Insulin sensitivity was determined by the euglycemic (5.0 mM) hyperinsulinemic (40 mU x m(-2) x min(-1)) clamp. Adiponectin multimers [high (HMW), middle (MMW), and low molecular weight (LMW)] were measured by nondenaturing Western blot analysis. Relative quantification of adiponectin receptor expression through RT-PCR was determined from skeletal muscle biopsy samples. Greater weight loss occurred in ExHypo compared with ExEu subjects (8.0 +/- 0.6 vs. 3.2 +/- 0.6%, P < 0.0001). Insulin sensitivity improved postintervention in both groups (ExHypo: 2.5 +/- 0.3 vs. 4.4 +/- 0.5 mg x kg FFM(-1) x min(-1), and ExEu: 2.9 +/- 0.4 vs. 4.1 +/- 0.4 mg x kg FFM(-1) x min(-1), P < 0.0001). Comparison of multimer isoforms revealed a decreased percentage in MMW relative to HMW and LMW (P < 0.03). The adiponectin SA ratio (HMW/total) was increased following both interventions (P < 0.05) and correlated with the percent change in insulin sensitivity (P < 0.03). Postintervention adiponectin receptor mRNA expression was also significantly increased (AdipoR1 P < 0.03, AdipoR2 P < 0.02). These data suggest that part of the improvement in insulin sensitivity following exercise and diet may be due to changes in the adiponectin oligomeric distribution and enhanced membrane receptor expression.  相似文献   

3.
目的:探讨运动对老年肥胖大鼠内脏脂肪组织脂联素mRNA和蛋白质表达、血浆脂联素浓度及胰岛素抵抗的影响。方法:取雄性SD大鼠,鼠龄21 d,分青春期、壮年期和老年期三个阶段喂养高脂饲料(脂肪率为36.3%~40.0%),建立老年肥胖模型。鼠龄达到60周后,取自然生长老年大鼠随机分为对照组(C)和老年运动组(AE),n=6;取老年肥胖大鼠随机分为肥胖对照组(OC)和肥胖运动组(OE),n=6。动物跑台坡度0°,运动速度及时间为(15 m/min×15 min),4组/次,组间休息5 min,每次共运动60 min,5次/周,持续运动8周。8周后,检测内脏脂肪组织脂联素mRNA和蛋白质表达,测定血糖、血浆脂联素浓度和胰岛素浓度,计算胰岛素抵抗。结果:运动干预后,与对照组比较,肥胖对照组大鼠脂联素mRNA和蛋白质表达显著减低,血糖浓度和胰岛素抵抗明显增高;而老年运动组大鼠脂联素mRNA和蛋白质表达显著增高。与肥胖对照组大鼠比较,肥胖运动组大鼠脂联素mRNA和蛋白质表达显著增高、血浆脂联素水平增高,血糖浓度和胰岛素抵抗明显减低。结论:老年肥胖大鼠内脏脂肪组织脂联素mRNA和蛋白质表达均降低,伴随胰岛素抵抗、血糖升高。运动能显著增加其内脏脂肪组织脂联素mRNA和蛋白质表达,升高血浆脂联素水平,改善胰岛素抵抗,降低血糖。  相似文献   

4.
Carbone F  La Rocca C  Matarese G 《Biochimie》2012,94(10):2082-2088
Recent years have seen several advances in our understanding of the functions of adipose tissue regarding not only the energy storage, but also the regulation of complex metabolic and endocrine functions. In this context, leptin and adiponectin, the two most abundant adipocyte products, represent one of the best example of adipocytokines involved in the control of energy expenditure, lipid and carbohydrate metabolism as well as in the regulation of immune responses. Leptin and adiponectin secretion is counter-regulated in vivo, in relation to degree of adiposity, since plasma leptin concentrations are significantly elevated in obese subjects in proportion to body mass index while adiponectin secretion decreases in relation to the amount of adipose tissue. In this review we focus on the main biological activities of leptin and adiponectin on the lipid and carbohydrate metabolism and on their contribute in regulation of innate and adaptive immune responses.  相似文献   

5.
Objective: This study aimed to investigate the regulation of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) gene expression in primary skeletal muscle myotubes, derived from human donors, after exposure to globular adiponectin (gAd) and leptin. Research Methods and Procedures: Four distinct primary cell culture groups were established [Lean, Obese, Diabetic, Weight Loss (Wt Loss); n = 7 in each] from rectus abdominus muscle biopsies obtained from surgical patients. Differentiated myotube cultures were exposed to gAd (0.1 μg/mL) or leptin (2.5 μg/mL) for 6 hours. AdipoR1 and AdipoR2 gene expression was measured by real‐time polymerase chain reaction analysis. Results: AdipoR1 mRNA expression in skeletal muscle myotubes derived from Lean subjects (p < 0.05) was stimulated 1.8‐fold and 2.5‐fold with gAd and leptin, respectively. No increase in AdipoR1 gene expression was measured in myotubes derived from Obese, Diabetic, or Wt Loss subjects. AdipoR2 mRNA expression was unaltered after gAd and leptin exposure in all myotube groups. Discussion: Adiponectin and leptin are rapid and potent stimulators of AdipoR1 in myotubes derived from lean healthy individuals. This effect was abolished in myotubes derived from obese, obese diabetic subjects, and obese‐prone individuals who had lost significant weight after bariatric surgery. The incapacity of skeletal muscle of obese and diabetic individuals to respond to exogenous adiponectin and leptin may be further suppressed as a result of impaired regulation of the AdipoR1 gene.  相似文献   

6.
间歇性低氧对肥胖小鼠瘦素及其受体表达的影响   总被引:3,自引:0,他引:3  
Qin L  Song Z  Wen SL  Jing R  Li C  Xiang Y  Qin XQ 《生理学报》2007,59(3):351-356
为探讨适度低氧环境对体重的影响及其作用机制,明确瘦素在其中的作用,用高脂饮食建立小鼠肥胖模型并观察间歇性低氧的干预效果。健康昆明小鼠随机分为4组(每组20只),正常对照组:喂正常食物,不进行间歇性低氧训练;低氧组:喂正常食物,并进行间歇性低氧训练;肥胖组:喂高脂、高糖食物,但不进行间歇性低氧训练;低氧+肥胖组,喂高脂、高糖食物,并进行间歇性低氧训练。40d后,测量小鼠体重,用酶联免疫吸附法测定血清瘦素水平,免疫组织化学检测肝脏瘦素受体表达,苏丹Ⅲ染色检测肝脏脂肪细胞分布和密度。结果显示,与正常对照组相比,肥胖组小鼠平均体重和平均血清瘦素水平显著升高,肝脏分布大量脂肪细胞,提示高脂模型建立成功;经过间歇性低氧训练后,低氧组和低氧+肥胖组小鼠的平均体重及肝脏脂肪细胞分布密度和范围分别较对照组和肥胖组低,而血清瘦素水平明显增高;低氧+肥胖组小鼠肝脏瘦素受体的表达高于肥胖组。结果提示,适度的间歇性低氧可以通过提高血清瘦素水平和增强肝脏瘦素受体表达而使体重减轻,并有效防止肝细胞脂肪变。  相似文献   

7.
Effects of exercise on adiponectin and adiponectin receptor levels in rats   总被引:4,自引:0,他引:4  
Adiponectin reportedly reduces insulin-resistance. Exercise has also been shown to lessen insulin-resistance, though it is not known whether exercise increases levels of adiponectin and/or its receptors or whether its effects are dependent on exercise intensity and/or frequency. Catecholamine levels have been shown to increase during exercise and to fluctuate based on exercise intensity and duration. In light of this information, we examined the effects of exercise on catecholamine, adiponectin, and adiponectin receptor levels in rats. Our data showed that blood adiponectin levels increased by 150% in animals that exercised at a rate of 30 m/min for 60 min 2 days per week, but not 5 days, per week; no such increase was observed in rats that exercised at a rate of 25 m/min for 30 min. The effects of exercise on adiponectin receptor mRNA were variable, with adiponectin receptor 1 (AdipoR1) levels in muscle increasing up to 4 times while adiponectin receptor 2 (AdipoR2) levels in liver fell to below half in response to exercise at a rate of 25 m/min for 30 min 5 days per week. We also observed that urinary epinephrine levels and plasma lipids were elevated by exercise at a rate of 25 m/min for 30 min 2 days per week. Exercise frequency at a rate of 25 m/min for 30 min correlated with AdipoR1 and AdipoR2 mRNA expression in the muscle and liver, respectively (r=0.640, p<0.05 and r=-0.808, p<0.0005, respectively). Urinary epinephrine levels correlated with AdipoR2 mRNA expression in liver tissues (r=-0.664, p<0.05) in rats that exercised at a rate of 25 m/min for 30 min. Thus, exercise may regulate adiponectin receptor mRNA expression in tissues, which might cause increases in glucose uptake and fatty acid oxidation in the muscle. The effect of exercise on adiponectin levels depends on the specific conditions of the exercise.  相似文献   

8.
Objective: The objective of this study was to investigate the association among adiposity, insulin resistance, and inflammatory markers [high‐sensitivity C‐reactive protein (hs‐CRP), interleukin (IL)‐6, and tumor necrosis factor (TNF)‐α] and adiponectin and to study the effects of exercise training on adiposity, insulin resistance, and inflammatory markers among obese male Korean adolescents. Research Methods and Procedures: Twenty‐six obese and 14 lean age‐matched male adolescents were studied. We divided the obese subjects into two groups: obese exercise group (N = 14) and obese control group (N = 12). The obese exercise group underwent 6 weeks of jump rope exercise training (40 min/d, 5 d/wk). Adiposity, insulin resistance, lipid profile, hs‐CRP, IL‐6, TNF‐α, and adiponectin were measured before and after the completion of exercise training. Results: The current study demonstrated higher insulin resistance, total cholesterol, LDL‐C levels, triglyceride, and inflammatory markers and lower adiponectin and HDL‐C in obese Korean male adolescents. Six weeks of increased physical activity improved body composition, insulin sensitivity, and adiponectin levels in obese Korean male adolescents without changes in TNF‐α, IL‐6, and hs‐CRP. Discussion: Obese Korean male adolescents showed reduced adiponectin levels and increased inflammatory cytokines. Six weeks of jump rope exercise improved triglyceride and insulin sensitivity and increased adiponectin levels.  相似文献   

9.
10.
11.
Leptin, adiponectin, and resistin are key hormones produced by adipose tissue. In the present study, we have examined the effects of acute cold exposure (18 h at 6 degrees C) on the expression of the genes encoding these hormones in both brown and white fat of rats. Acute cold exposure resulted in a significant (p < 0.001) increase in the level of UCP1 and metallothionein-1 mRNAs in brown adipose tissue, indicative of an activation of thermogenesis. Leptin mRNA was decreased (p < 0.001) in brown fat in the cold, and there was also a small but statistically significant (p < 0.05) decrease in adiponectin mRNA; resistin mRNA did not change significantly (p > 0.05). In white fat, the level of leptin mRNA also fell in the cold (p < 0.05), but there was no significant change (p > 0.05) in either adiponectin or resistin mRNA. The serum concentration of adiponectin was unchanged following acute cold exposure. We conclude that while leptin gene expression is inhibited by exposure to cold, there is no major effect on the expression of either the adiponectin or resistin genes in white or brown fat despite the cold-induced stimulation of sympathetic activity and fatty acid flux. Thus, adiponectin and resistin are unlikely to play a key role in the extensive metabolic adaptations to cold.  相似文献   

12.
13.
Exercise training causes a decline in basal and glucose-stimulated plasma insulin levels and improves glucose tolerance. Furthermore evidence has been presented for effects on both insulin receptors and postreceptor events. However, it is unclear how these changes affect the in vivo dose-response relationship between insulin levels and whole-body glucose utilization. The aim was to examine the effect of exercise training on this relationship and distinguish between changes in insulin sensitivity and responsiveness. Euglycemic clamps were performed in trained (ET, running 1 h/day for 7 wk), sedentary (CON), and sedentary food-restricted ( SFR ) rats. ET rats showed no increase in maximal net glucose utilization in response to insulin (ET 29.5 +/- 0.6 vs. CON 28.2 +/- 1.5 mg X kg-1 X min-1, NS), whereas insulin sensitivity was increased as indicated by the insulin concentration causing half-maximal stimulation (ED50) (49 +/- 20 for ET and 133 +/- 30 mU/l for CON). Thus 7 wk of moderate exercise training resulted in a significant shift of whole-body insulin sensitivity to place ED50 well within the physiological range of insulin concentrations. This would undoubtedly result in improved glucose disposal in the postprandial state and emphasizes the potential benefit of exercise in obesity and type II diabetes.  相似文献   

14.
15.
长期强迫运动对布氏田鼠体重和血清瘦素浓度的影响   总被引:1,自引:0,他引:1  
动物稳定体重的维持需要能量摄入和消耗之间的平衡.运动是影响动物能量平衡的重要因素之一.为了理解运动对布氏田鼠的生理学效应,我们在室内条件下,运用踏车测定了强迫运动训练6周后动物的体重、体脂含量、摄食量和瘦素浓度的变化.摄食量采用代谢笼法测定,体脂含量采用索氏提取法,血清瘦素含量采用放免试剂盒测定.结果发现强迫运动训练6周对布氏田鼠的体重和摄食量都无显著影响,与非运动训练组田鼠相比,运动训练组田鼠的身体脂肪重量降低了3.5 g,运动组田鼠的血清瘦素水平比对照组下降了30%.对照组田鼠的血清瘦素与体脂含量具有明显的相关性,但运动组则不具有相关性.这些结果表明在强迫运动训练期间布氏田鼠不是通过增加食物摄入,而可能是通过动员贮存的脂肪和减少非活动性能量消耗等方式来维持自身的能量平衡.瘦素在长期强迫运动训练过程中对身体脂肪含量的变化具有调节作用.  相似文献   

16.
17.
18.
19.
The aim of the present study was to identify the role of leptin and adiponectin in the development of resistance or susceptibility to diet-induced obesity in rats. For this purpose, male Wistar rats were fed with standard laboratory diet (control group) or cafeteria diet. After 15 days, two groups of rats with different response respect to the cafeteria diet were identified, and were assigned as diet-induced obesity (DIO) and diet resistant (DR) rats. The high-fat diet induced a very significant increase in both body and fat mass weight in DIO group. However, DR rats, gained even less weight than control-fed animals. Food intake was increased in cafeteria-fed rats (both DIO and DR) in comparison to control group; but hyperphagia was higher in DIO rats. In addition, feed efficiency (the ratio of weight gained to calories consumed) was significantly decreased in DR as compared to DIO rats. Regarding leptin, a significant increase in both adipose tissue gene expression and serum levels was observed in DIO rats in comparison with other groups (control and DR). A significant increase in both adiponectin circulating levels and adipose tissue mRNA expression was also observed in DIO animals as compared with the other groups. These data suggest that the susceptibility to obesity of DIO rats might be secondary, at least in part, to an earlier development of leptin resistance, which could lead to alterations in food intake (hyperphagia) and energetic metabolism. However, neither changes in leptin or adiponectin seem to be involved in the adaptive mechanisms that confer resistance to high fat intake.  相似文献   

20.
The purpose of this study was to correlate the exercise-induced changes of oxidant stress enzymes with possible modification of the response to the putative oxidant stressor doxorubicin. Enzymatic and histological changes were studied in mice placed on a 21-wk swim training program (1 h/day, 5 days/wk) with and without anthracycline administration. Doxorubicin (4 mg/kg) was administered intravenously through a tail vein on 10 separate days over a 7-wk period (twice weekly during weeks 10, 11, 14, 15, and 16). Blood, liver, and heart levels of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GP) were measured following the 9th and 21st wk. Myocardial histomorphological observations were made by light microscopy after 21 wk. Following 9 wk of training swim-trained animals had significantly elevated levels of CAT, SOD, and GP in blood, as well as elevated GP in liver. After 21 wk, trained animals, regardless of drug status, had elevated blood CAT and SOD activity and increased liver CAT and GP. Training also produced increases in blood GP, liver SOD, and heart CAT; however, in conjunction with doxorubicin these changes were not seen. The degree of cardiotoxicity was significantly greater in the sedentary drug-treated animals than in the swim-trained drug-treated animals. The results suggest a correlation between antioxidant enzyme levels in blood and liver and the degree of damage caused by an anthracycline drug. It was concluded that exercise ameliorates severe toxic damage caused by doxorubicin administration, possibly by increasing enzymes that combat free radical damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号