首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thiamine diphosphate (TDP) serves as a cofactor for enzymes engaged in pivotal carbohydrate metabolic pathways, which are known to be modulated under stress conditions to ensure the cell survival. Recent reports have proven a protective role of thiamine (vitamin B(1)) in the response of plants to abiotic stress. This work aimed at verifying a hypothesis that also baker's yeast, which can synthesize thiamine de novo similarly to plants and bacteria, adjust thiamine metabolism to adverse environmental conditions. Our analyses on the gene expression and enzymatic activity levels generally showed an increased production of thiamine biosynthesis enzymes (THI4 and THI6/THI6), a TDP synthesizing enzyme (THI80/THI80) and a TDP-requiring enzyme, transketolase (TKL1/TKL) by yeast subjected to oxidative (1 mM hydrogen peroxide) and osmotic (1 M sorbitol) stress. However, these effects differed in magnitude, depending on yeast growth phase and presence of thiamine in growth medium. A mutant thi4Δ with increased sensitivity to oxidative stress exhibited enhanced TDP biosynthesis as compared with the wild-type strain. Similar tendencies were observed in mutants yap1Δ and hog1Δ defective in the signaling pathways of the defense against oxidative and osmotic stress, respectively, suggesting that thiamine metabolism can partly compensate damages of yeast general defense systems.  相似文献   

2.
Thiamin (or thiamine) is a water-soluble B-vitamin (B1), which is required, in the form of thiamin pyrophosphate, as an essential cofactor in crucial carbon metabolism reactions in all forms of life. To ensure adequate metabolic functioning, humans rely on a sufficient dietary supply of thiamin. Increasing thiamin levels in plants via metabolic engineering is a powerful strategy to alleviate vitamin B1 malnutrition and thus improve global human health. These engineering strategies rely on comprehensive knowledge of plant thiamin metabolism and its regulation. Here, multiple metabolic engineering strategies were examined in the model plant Arabidopsis thaliana. This was achieved by constitutive overexpression of the three biosynthesis genes responsible for B1 synthesis, HMP-P synthase (THIC), HET-P synthase (THI1), and HMP-P kinase/TMP pyrophosphorylase (TH1), either separate or in combination. By monitoring the levels of thiamin, its phosphorylated entities, and its biosynthetic intermediates, we gained insight into the effect of either strategy on thiamin biosynthesis. Moreover, expression analysis of thiamin biosynthesis genes showed the plant’s intriguing ability to respond to alterations in the pathway. Overall, we revealed the necessity to balance the pyrimidine and thiazole branches of thiamin biosynthesis and assessed its biosynthetic intermediates. Furthermore, the accumulation of nonphosphorylated intermediates demonstrated the inefficiency of endogenous thiamin salvage mechanisms. These results serve as guidelines in the development of novel thiamin metabolic engineering strategies.  相似文献   

3.
赤霉素和脱落酸在植物生理过程中具有重要的调控作用,其生物合成途径迄今已基本阐明。赤霉素与类胡萝卜素的生物合成途径具有共同前体牻牛儿基牻牛儿基二磷酸,而脱落酸则直接来自于类胡萝卜素。参与这两种植物激素和类胡萝卜素代谢过程的大多数酶基因已经从不同植物中获得克隆;各种调控方式也随着分子生物学的研究工作而得到鉴定。本文就近年来对赤霉素和脱落酸等代谢调控机制及其与植物类胡萝卜素代谢之间关系的研究工作做简要回顾。  相似文献   

4.
Isopentenyl diphosphate (IPP), which is produced from mevalonic acid or other nonmevalonic substrates, is the universal precursor of isoprenoids in nature. Despite the presence of several isoprenoid compounds in plastids, enzymes of the mevalonate pathway leading to IPP formation have never been isolated or identified to our knowledge. We now describe the characterization of two pepper (Capsicum annuum L.) cDNAs, CapTKT1 and CapTKT2, that encode transketolases having distinct and dedicated specificities. CapTKT1 is primarily involved in plastidial pentose phosphate and glycolytic cycle integration, whereas CapTKT2 initiates the synthesis of isoprenoids in plastids via the nonmevalonic acid pathway. From pyruvate and glyceraldehyde-3-phosphate, CapTKT2 catalyzes the formation of 1-deoxy-xylulose-5-phosphate, the IPP precursor. CapTKT1 is almost constitutively expressed during the chloroplast-to-chromoplast transition, whereas CapTKT2 is overexpressed during this period, probably to furnish the IPP necessary for increased carotenoid biosynthesis. Because deoxy-xylulose phosphate is shared by the plastid pathways of isoprenoid, thiamine (vitamin B1), and pyridoxine (vitamin B6) biosynthesis, our results may explain why albino phenotypes usually occur in thiamine-deficient plants.  相似文献   

5.
Supply of precursors for carotenoid biosynthesis in plants   总被引:2,自引:0,他引:2  
Carotenoids are isoprenoids of industrial and nutritional interest produced by all photosynthetic organisms, including plants. Too often, the metabolic engineering of plant carotenogenesis has been obstructed by our limited knowledge on how the endogenous pathway interacts with other related metabolic pathways, particularly with those involved in the production of isoprenoid precursors. However, recent discoveries are providing new insights into this field. All isoprenoids derive from prenyl diphosphate precursors. In the case of carotenoids, these precursors are produced predominantly by the methylerythritol 4-phosphate (MEP) pathway in plants. This review focuses on the progress in our understanding of how manipulation of the MEP pathway impacts carotenoid biosynthesis and on the discoveries underlining the central importance of coordinating the supply of MEP-derived precursors with the biosynthesis of carotenoids and other derived isoprenoids.  相似文献   

6.
In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and PHOSPHOSERINE AMINOTRANSFERASE1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism.  相似文献   

7.
For adaptation to ever-changing environments,plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates(GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promotin...  相似文献   

8.
9.
In animals, thiamine deficiency leads to specific brain lesions, generally attributed to decreased levels of thiamine diphosphate, an essential cofactor in brain energy metabolism. However, another far less abundant derivative, thiamine triphosphate (ThTP), may also have a neuronal function. Here, we show that in the rat brain, ThTP is essentially present and synthesized in mitochondria. In mitochondrial preparations from brain (but not liver), ThTP can be produced from thiamine diphosphate and Pi. This endergonic process is coupled to the oxidation of succinate or NADH through the respiratory chain but cannot be energized by ATP hydrolysis. ThTP synthesis is strongly inhibited by respiratory chain inhibitors, such as myxothiazol and inhibitors of the H+ channel of F0F1-ATPase. It is also impaired by disruption of the mitochondria or by depolarization of the inner membrane (by protonophores or valinomycin), indicating that a proton-motive force (Δp) is required. Collapsing Δp after ThTP synthesis causes its rapid disappearance, suggesting that both synthesis and hydrolysis are catalyzed by a reversible H+-translocating ThTP synthase. The synthesized ThTP can be released from mitochondria in the presence of external Pi. However, ThTP probably does not accumulate in the cytoplasm in vivo, because it is not detected in the cytosolic fraction obtained from a brain homogenate. Our results show for the first time that a high energy triphosphate compound other than ATP can be produced by a chemiosmotic type of mechanism. This might shed a new light on our understanding of the mechanisms of thiamine deficiency-induced brain lesions.  相似文献   

10.
Malate metabolism by NADP-malic enzyme in plant defense   总被引:8,自引:0,他引:8  
Malate is involved in various metabolic pathways, and there are several enzymes that metabolize it. One important malate metabolizing enzyme is NADP-malic enzyme (NADP-ME). NADP-ME functions in many different pathways in plants, having an important role in C4 photosynthesis where it releases the CO2 to be used in carbon fixation by Rubisco. Apart from this specialized role, NADP-ME is thought to fulfill diverse housekeeping functions because of its universal presence in different plant tissues. NADP-ME is induced after wounding or exposure to UV-B radiation. In this way, the enzyme is implicated in defense-related deposition of lignin by providing NADPH for the two NADPH-dependent reductive steps in monolignol biosynthesis. On the other hand, it can supply NADPH for flavonoid biosynthesis as many steps in the flavonoid biosynthesis pathway require reductive power. Pyruvate, another product of NADP-ME reaction, can be used for obtaining ATP through respiration in the mitochondria; and may serve as a precursor for synthesis of phosphoenolpyruvate (PEP). PEP is utilized in the shikimate pathway, leading to the synthesis of aromatic amino acids including phenylalanine, the common substrate for lignin and flavonoid synthesis. Moreover, NADP-ME can be involved in mechanisms producing NADPH for synthesis of activated oxygen species that are produced in order to kill or damage pathogens. In conclusion, an increase in the levels of NADP-ME could provide building blocks and energy for biosynthesis of defense compounds, suggesting a role of malate metabolism in plant defense.  相似文献   

11.
In plants, 3 different pathways of serine biosynthesis have been described: the Glycolate pathway, which is associated with photorespiration, and 2 non-photorespiratory pathways, the Glycerate and the Phosphorylated pathways. The Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been known since the 1950s, but has been studied relatively little, probably because it was considered of minor significance as compared with the Glycolate pathway. In the associated study1, we described for the first time in plants the in vivo functional characterization of the PPSB, by targeting the phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Following a gain- and loss-of-function approach in Arabidopsis, we provided genetic and molecular evidence for the essential role of PSP1 for embryo and pollen development, and for proper root growth. A metabolomics study indicated that the PPSB affects glycolysis, the Krebs cycle, and the biosynthesis of several amino acids, which suggests that this pathway is an important link connecting metabolism and development. The mechanisms underlying the essential functions of PSP1 are discussed.  相似文献   

12.
Molybdoenzymes are involved in a variety of essential pathways including nitrate assimilation, sulfur and/or purine metabolism and abscisic acid biosynthesis. Most organisms produce several such enzymes requiring a molybdopterin cofactor for catalytic function. Mutations that result in a lack of the molybdopterin cofactor display a pleiotropic loss of molybdoenzyme activities, and this phenotype has been used to identify genes involved in cofactor biosynthesis or utilization. Although several cofactor genes have been analyzed in prokaryotes, much less is known concerning eukaryotic molybdenum cofactor (MoCF) genes. This work is focused on the Drosophila MoCF gene cinnamon (cin) which encodes a multidomain protein, CIN, that shows significant similarity to three proteins encoded by separate prokaryotic MoCF genes. These domains are also present in the product of cnx1, an Arabidopsis MoCF gene, and in GEPHYRIN, a rat protein thought to organize the glycine receptor, GlyR, within the postsynaptic membrane. Since this apparent consolidation of separate prokaryotic genes into a single eukaryotic gene is a feature of other conserved metabolic pathways, we wished to determine whether the protein's function is also conserved. This report shows that the plant gene cnx1 can rescue both enzymatic and physiological defects of Drosophila carrying cin mutations, indicating that the two genes serve similar or identical functions. In addition, we have investigated the relationship between CINNAMON and GEPHYRIN, using immunohistochemical methods to localize the CIN protein in Drosophila embryos. Most of the CIN protein, like GEPHYRIN in the rat CNS, is localized to the cell borders and shows a tissue-specific pattern of expression. In a parallel study, antibody to GEPHYRIN revealed the same tissue-specific expression pattern in fly embryos. Both antibodies show altered staining patterns in cin mutants. Taken together, these results suggest that GEPHYRIN may also carry out a MoCF-related function.  相似文献   

13.
Pantothenate is the metabolic precursor of Coenzyme A, an indispensable cofactor for many fundamental cellular processes. In this study, we show that many bacterial species have acquired multiple copies of pantothenate biosynthesis pathway genes via horizontal and vertical gene transfer events. Some bacterial species were also found to lack panE and panD genes, and depended on alternative enzymes/metabolic sources for pantothenate production. To shed light on the factors responsible for such dynamic evolutionary selections, the structural and functional characteristics of P. aeruginosa ketopantoate reductase (KPR), an enzyme that catalyzes the rate-limiting step and also the most duplicated, was investigated. A comparative analysis of apo and NADP+ bound crystal structures of P. aeruginosa KPR with orthologs, revealed that the residues involved in the interaction with specific phosphate moiety of NADP+ are relatively less conserved, suggesting dynamic evolutionary trajectories in KPRs for redox cofactor selection. Our structural and biochemical data also show that the specific conformational changes mediated by NADPH binding facilitate the cooperative binding of ketopantoate. From drastically reduced catalytic activity for NADH catalyzed the reaction with significantly higher KM of ketopantoate, it appears that the binding of ketopantoate is allosterically regulated to confer redox cofactor specificity. Altogether, our results, in compliance with earlier studies, not only depict the role of lateral gene transfer events in many bacterial species for enhancing pantothenate production but also highlight the possible role of redox cofactor balance in the regulation of pantothenate biosynthesis pathways.  相似文献   

14.
Roles for glutathione transferases in plant secondary metabolism   总被引:5,自引:0,他引:5  
Plant glutathione transferases (GSTs) are classified as enzymes of secondary metabolism, but while their roles in catalysing the conjugation and detoxification of herbicides are well known, their endogenous functions are largely obscure. Thus, while the presence of GST-derived S-glutathionylated xenobiotics have been described in many plants, there is little direct evidence for the accumulation of similarly conjugated natural products, despite the presence of a complex and dichotomous metabolic pathway which processes these reaction products. The conservation in glutathione conjugating and processing pathways, the co-regulation of GSTs with inducible plant secondary metabolism and biochemical studies showing the potential of these enzymes to conjugate reactive natural products are all suggestive of important endogenous functions. As a framework for addressing these enigmatic functions we postulate that either: (a) the natural reaction products of GSTs are unstable and undergo reversible S-glutathionylation; (b) the conjugation products of GSTs are very rapidly processed to derived metabolites; (c) GSTs do not catalyse conventional conjugation reactions but instead use glutathione as a cofactor rather than co-substrate; or (d) GSTs are non-catalytic and function as transporter proteins for secondary metabolites and their unstable intermediates. In this review, we describe how enzyme biochemistry and informatics are providing clues as to GST function allowing for the critical evaluation of each of these hypotheses. We also present evidence for the involvement of GSTs in the synthesis of sulfur-containing secondary metabolites such as volatiles and glucosinolates, and the conjugation, transport and storage of reactive oxylipins, phenolics and flavonoids.  相似文献   

15.
16.
Thiamine or vitamin B-1, is an essential constituent of all cells since it is a cofactor for two enzyme complexes involved in the citric acid cycle, pyruvate dehydrogenase and -ketoglutarate dehydrogenase. Thiamine is synthesized by plants, but it is a dietary requirement for humans and other animals. The biosynthetic pathway for thiamine in plants has not been well characterized and none of the enzymes involved have been isolated. Here we report the cloning and characterization of two cDNAs representing members of the maize thi1 gene family encoding an enzyme of the thiamine biosynthetic pathway. This assignment was made based on sequence homology to a yeast thiamine biosynthetic gene and by functional complementation of a yeast strain in which the endogenous gene was inactivated. Using immunoblot analysis, the thi1 gene product was found to be located in a plastid membrane fraction. RNA gel blot analysis of various tissues and developmental stages indicated thi1 expression was differentially regulated in a manner consistent with what is known about thiamine synthesis in plants. This is the first report of cDNAs encoding proteins involved in thiamine biosynthesis for any plant species.  相似文献   

17.
Lu S  Li L 《植物学报(英文版)》2008,50(7):778-785
Carotenoids are Indispensable to plants and play a critical role in human nutrition and health. Significant progress has been made in our understanding of carotenoid metabolism in plants. The biosynthetic pathway has been extensively studied.Nearly all the genes encoding the biosynthetic enzymes have been isolated and characterized from various organisms. In recent years, there is an increasing body of work on the signaling pathways and plastid development, which might provide global control of carotenoid biosynthesis and accumulation. Herein, we will highlight recent progress on the biosynthesis,regulation, and metabolic engineering of carotenoids in plants, as well as the future research towards elucidating the regulatory mechanisms and metabolic network that control carotenoid metabolism.  相似文献   

18.
19.
Enterohemorrhagic Escherichia coli (EHEC) are source of emerging infectious disease in India. Escherichia coli O157:H7 is an EHEC strain showing multiple antibiotic resistances and the cause of infantile diarrhea and hemolytic uremic syndrome worldwide. A novel strategy to counteract multiple antibiotic resistant organisms is to design drugs which specifically target metabolic pathways such as thiamine biosynthetic pathways found exclusively in prokaryotes. Homology modeling was used for model building of a terminal thiamine biosynthesis enzyme phosphoryl thymidine kinase (Thi E) using Geno3D, Swiss Model and Modeller. The best model was selected based on overall stereochemical quality. The potential ligand binding sites in the model were identified by CASTp server. The validated theoretical model of the 3D structure of the thiE protein of E. coli O157:H7 was predicted using a thiamine phosphate pyrophosphatase from Pyrococcus furiosus (PDB ID: 1X13_A) as template. The active pockets of ligand binding sites in the enzyme were identified. In this study, phosphoryl thymidine kinase (thi E), a terminal enzyme in the thiamine biosynthesis pathway in the pathogen has been modeled to be used in future as a potential drug target by the design of suitable inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号