首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two new diterpenoids, ent-7α-acetoxy-15-beyeren-18-oic acid and (13S,15S)-6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-abietene-11,14-dione, have been isolated from Plectranthus saccatus and Plectranthus porcatus, respectively, and their structures were established by 1D and 2D NMR spectroscopic studies. The new diterpenes showed no activity against Gram-negative bacteria and Candida albicans (yeast strain). Among Gram-positive bacteria, the lower MIC value was 62.50 μg/ml for the abietane derivative against Staphylococcus aureus ATCC 6538.  相似文献   

2.
Methyldrostanolone (2α,17α-dimethyl-17β-hydroxy-5α-androstan-3-one) was synthesized from drostanolone (17β-hydroxy-2α-methyl-5α-androstan-3-one) and identified in commercial products. Cultures of cryopreserved human hepatocytes were used to study the biotransformation of drostanolone and its 17-methylated derivative. For both steroids, the common 3α- (major) and 3β-reduced metabolites were identified by GC-MS analysis of the extracted culture medium and the stereochemistry confirmed by incubation with 3α-hydroxysteroid dehydrogenase. Structures corresponding to hydroxylated metabolites in C-12 (minor) and C-16 were proposed for other metabolites based upon the evaluation of the mass spectra of the pertrimethylsilyl (TMS-d0 and TMS-d9) derivatives. Finally, on the basis of the GC-MS and 1H NMR data and through chemical synthesis of the 17-methylated model compounds, structures could be proposed for metabolites hydroxylated in C-2. All the metabolites extracted from hepatocyte culture medium were present although in different relative amounts in urines collected following the administration to a human volunteer, therefore confirming the suitability of the cryopreserved hepatocytes to generate characteristic metabolites and study biotransformation of new steroids.  相似文献   

3.
The tuber of Humirianthera rupestris (Icacinaceae) contains the degraded diterpenoids 3β,20-epoxy-30α- hydroxy- 14-oxo-9β-podocarpan-19,6β-olide (humirianthenolide A), 3β,20-epoxy-3α,14α-dihydroxy-9β-podocarpan-19,6β- olide (humirianthenolide B), 3β,20; 16,14-diepoxy-3α-hydroxy-17-nor-15-oxo-9β-abiet-13-en-19,6β-olide (humirianthenolide C), 3β,20-epoxy-3α,14-dihydroxy-13-oxo-9β-podocarp-8(14)-en-19,6β-olide (humirianthenolide D), 3β,20-epoxy-3α-hidroxy-14-oxo-8α,9β-podocarpan-19,6β-olide (humirianthenolide E) and 3β,20-epoxy-3α,14β- dihydroxy-8α,9β-podocarpan-19,6β-olide (humirianthenolide F). 1H NMR and 13C NMR spectroscopy were efrective for the determination of the humirianthenolide structures.  相似文献   

4.
Two diastereoisomers, 5R,6R-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (7) and 5S,6S-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (10) were synthesized for evaluation as possible biosynthetic intermediates in the enzymatic transformation of PGH2 or PGG2 into PGI2. The synthetic sequence entails the stereospecific reduction of the 9-keto function in PGE2 methyl ester after protecting the C-11 and C-15 hydroxyls as tbutyldimethylsilyl ethers. The resulting PGF derivative was epoxidized exclusively at the C-5 (6) double bond to yield a mixture of epoxides, which underwent facile rearrangement with SiO2 to yield the 5S,6S and 5R,6R-5-hydroxy-6(9α)-oxido cyclic ethers. It was found that dog aortic microsomes were unable to transform radioactive 9β-5S,6S[3H] or 9β-5R,6R[3H]-5-hydroxy-6(9α)-oxido cyclic ethers into PGI2. Also, when either diastereoisomer was included in the incubation mixture, neither isomer diluted the conversion of [1-14C]arachidonic acid into [1-14C]PGI2.  相似文献   

5.
Three new bridged 14β,26-epoxy-C-homo-pentacyclic triterpenes isolated from Primula rosea have been shown to be 14β,26-epoxy-serratane-3,21-dione, 21α-hydroxy-14β,26-epoxy-serratane-3-one and 21β-hydroxy-14β,26-epoxy-serratane-3-one, respectively, on the basis of 1H NMR, 13C NMR and mass spectral and chemical evidence.  相似文献   

6.
Two new diterpenes, 3α-angeloyloxy-18-hydroxy-13-furyl-ent-labda-8(17)-ene and 3α-hydroxy-18-angeloyloxy- 13-furyl-ent-labda-8(17)-ene and an only recently reported third diterpene, 3α, 18-dihydroxy-13-furyl-ent-labda-8(17)-ene, were isolated from the leaves of Gutierrezia grandis. Their structures were determined by mass spectral, IR, 1H NMR and 13C NMR data was well as chemical evidence.  相似文献   

7.
The insecticidal sesquiterpenes cadina-4,10(15)-dien-3-one and aromadendr-1(10)-en-9-one were administered to the fungus Cyathus africanus ATCC 35853. Biotransformation of the former produced (4R)-9α-hydroxycadin-10(15)-en-3-one, while the latter gave 2β-hydroxyaromadendr-1(10)-en-9-one, 2α-hydroxyaromadendr-1(10)-en-9-one and 10α-hydroxy-1β,2β-epoxyaromadendran-9-one. The bioconversion of santonin led to the production of two analogues, 11,13-dihydroxysantonin and the hitherto unreported 8α,13-dihydroxysantonin, while cedrol yielded 3β,8β-dihydroxycedrane and 3α,8β-dihydroxycedrane. Stemod-12-ene, a diterpene, was transformed to 2-oxostemar-13-ene, a hitherto unknown analogue with a rearranged carbon framework. When methyl betulonate, a triterpenoid belonging to the lupane family, was supplied to the fungus 18α-ursane and 18α-oleanane derivatives, namely 19β-hydroxy-3-oxo-18α-oleanan-28-oic acid and 19α-hydroxy-3-oxo-18α-ursan-28-oic acids, were generated. There are no previous reports of fungal transformation of a triterpene in which a skeletal rearrangement occurred. All substrate administration experiments were done in the presence of the terpene cyclase inhibitor chlorocholine chloride (CCC), using the single phase – pulse feed method.  相似文献   

8.
5α-Androstane-3α, 16α 17β-triol was synthesized from 3β-hy-droxy-5-androsten-17-one. The procedure Involved catalytic hydrogenation of 3β-hydroxy-5-androsten-17-one to 3β-hydroxy-5α-androstan-17-one. This was followed by conversion of the 3β-hydroxy group to 3α-benzoyloxy group by the Mitsunobu reaction. Further treatment with isopropenyl acetate yielded 5α-androsten-16-ene-3α, 17-diol 3-benzoate 17-acetate. This was then converted to 3α, 17-dihydroxy-5α-androstan-16-one 3-benzoate 17-acetate via the unstable epoxide intermediate after treatment with m-cloroperoxybenzoic acid. LiAlH4 reduction of this compound formed 5α-androstane-3α, 16α, 17β-trlol. 1H and 13C NMR of various steroids are presented to confirm the structure of this compound.  相似文献   

9.
Glycryrrhizic acid was metabolized to 3-oxo-18β-glycyrrhetinic acid via 18β-glycyrrhetinic acid by Aspergillus niger, A. oryzae, A. sojae, and A. tamarii. Two methyl esters were derived from these two metabolites and identified by their 13C-NMR spectra and MS data.  相似文献   

10.
The complete structural elucidation of the two caffeic acid sugar esters verbascoside and orobanchoside, has been realized by 1H and 13C NMR studies. It has been demonstrated that verbascoside is β-(3′,4′-dihydroxyphenyl)ethyl-O-α-L-rhamnopyranosyl(1→3)-β-D-(4-O-caffeoyl)-glucopyranoside, and orobanchoside is β-hydroxy-β-(3′,4′-dihydroxyphenyl)-ethyl-O-α-L-rhamnopyranosyl(1→2)-β-D-(4-O-caffeoyl)-glucopyranoside.  相似文献   

11.
Solanolide, a new C22 steroid lactone sapogenin isolated from the leaves of Solanum hispidum Pers., has been characterized as 3β, 6α, 16β-trihydroxy-5α-pregnane-20S-carboxylic acid (22, 16)-lactone from 1H and 13C NMR analyses and correlation with neochlorogenin.  相似文献   

12.
This paper describes the structure of neutral exopolysaccharide (EPS) produced by Lactobacillus johnsonii 142, strain of the lactic acid bacteria isolated from the intestine of mice with experimentally induced inflammatory bowel disease (IBD). Sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, NOESY, and 1H,13C HSQC experiments revealed that the repeating unit of the EPS is a pentasaccharide:→3)-α-d-Galp-(1→3)-β-d-Glcp-(1→5)-β-d-Galf-(1→3)-α-d-Galp-(1→3)-α-d-Galp-(1→The rabbit antiserum raised against whole cells of L. johnsonii 142 reacted with homologous EPS, and cross-reacted with exopolysaccharide from Lactobacillus animalis/murinus 148 isolated also from mice with IBD, but not reacted with EPS of L. johnsonii 151 from healthy mice.  相似文献   

13.
The microbiological transformation by Gibberelia fujikuroi of ent-beyer-15-ene into the beyergibberellins A9 and A13, 7β-hydroxy- and 7β,18-dihydroxybeyerenolides, and of ent-beyer-15-en-19-ol into beyergibberellins A4, A7, A9, A13 and A25,and 7β-hydroxy-and 7β,18-dihydroxybeyerenolides is described. In contrast, ent-beyer-15-en-18-ol gave ent-7α, 18,19-trihydroxybeyer-15-ene, 7β,18-dihydroxybeyerenolide and ent-7α,18-dihydroxybeyer-15-en-19-oic acid again revealing the inhibitory effect of an 18-hydroxyl group on oxidative transformations at C-6β by Gibberella fujikuroi.  相似文献   

14.
β-lapachone (1) has entered phases I and II clinical trials for the treatment of solid tumors and the therapeutic efficacy of β-lapachone is closely related to its metabolic process. In order to contribute to a better understanding of human metabolism of β-lapachone, Cunninghamella elegans ATCC 10028b was used as a microbial model of mammalian metabolism to biotransform β-lapachone and two new glycosylated derivatives were produced. The chemical structures were elucidated as 6-hydroxy-2,2-dimethyl-3,4-dihydro-2H-naphtho[1,2-b]pyran-5-O-β-d-glucopyranoside (2) and 5-hydroxy-2,2-dimethyl-3,4-dihydro-2H-naphtho[1,2-b]pyran-6-O-β-d-glucopyranoside (3) by 1H NMR, 13C NMR, HMBC, HMQC, COSY and HRMS analyses. The major derivative (3) displayed a lower activity against breast cancer cell line SKBR-3 (IC50 = 312.5 μM) than β-lapachone (IC50 = 5.6 μM), but did not show cytotoxicity against normal fibroblasts cell line GM07492-A, whereas β-lapachone was highly toxic (IC50 = 7.25 μM). These metabolites were reported here for the first time and are similar to those that occur in phase II of human metabolism  相似文献   

15.
Rubicoumaric acid and rubifolic acid isolated from Rubia cordifolia have been shown to be 30-hydroxy-3β-p-hydroxycoumaryloxy-urs-12-ene-28-oic acid and 3β,30-dihydroxy-urs-12-ene-28-oic acid(30-hydroxyursolic acid) respectively on the basis of 1H NMR, 13C NMR and mass spectral and chemical evidence.  相似文献   

16.
Three new germacranolides, including two heliangolides (niveusin C-2′,3′-epoxide and 1,2-dehydroniveusin C-2′,3′-epoxide) and a germacrolide (3β-hydroxy-8β-epoxyangeloyloxycostunolide-1β,10α-epoxide) were isolated from Viguiera microphylla. Their structures were established by spectroscopic analyses, including extensive 1H NMR and 13C NMR decoupling experiments and chemical transformations. X-ray diffraction analysis confirmed the structure of niveusin C-2′,3′-epoxide.  相似文献   

17.
From Acnistus breviflorus the new 27-hydroxy-5β,6β-epoxy-1-oxo-(22R)-witha-24-enolide (2,3-dihydrojaborosalactone A) as well as seven known withanolides, withaferin A, 2,3-dihydrowithaferin A, 6α-chloro-5β-hydroxywithaferin A, 5,6-deoxywithaferin A, jaborosalactone A, jaborosalactone D and jaborosalactone E were isolated and characterized by means of spectroscopic (1H NMR, 13 C NMR and mass spectral) methods. Depending on the extraction solvent (methanol or ethanol), a known artifact (3β-methoxy-2,3-dihydrowithaferin A) and the new 5α-methoxy-4,5-dihydrojaborosalactone B and 5α-ethoxy-4,5-dihydrojaborosalactone B were also isolated and characterized.  相似文献   

18.
The capabilities of 20 strains of fungi to transform acetyl-11-keto-β-boswellic (AKBA) were screened. And biotransformation of AKBA by Cunninghamella blakesleana AS 3.970 afforded five metabolites (15), while two metabolites (6, 7) were isolated from biotransformation of Cunninghamella elegans AS 3.1207. The chemical structures of these metabolites were identified by spectral methods including 2D NMR and their structures were elucidated as 7β-hydroxy-3-acety-11-keto-β-boswellic acid (1), 21β-dihydroxy-3-acety-11-keto-β-boswellic acid (2), 7β,22α-dihydroxy-3-acety-11-keto-β-boswellic acid (3), 7β,16α-dihydroxy-3-acety-11-keto-β-boswellic acid (4), 7β,15α-dihydroxy-3-acety-11-keto-β-boswellic acid (5); 7β,15α,21β-trihydroxy-3-acety-11-keto-β-boswellic acid (6) and 15α,21β-dihydroxy-3-acety-11-keto-β-boswellic acid (7). All these products are previously unknown. Their primary structure–activity relationships (SAR) of inhibition activity on LPS-induced NO production in RAW 264.7 macrophage cells were evaluated.  相似文献   

19.
《Phytochemistry》1987,26(6):1801-1804
The structure of withaminimin, a new ergostane-type steroid from Physalis minima, was established by spectral analysis (1H and 13C NMR, MS) and chemical transformations, as (20S,22R)-15α-acetoxy-5α,6β,14α-trihydroxy-1-oxowitha-2,16,24-trienolide. An unusual MH2O+ quasi-molecular ion was observed in the chemical ionization mass spectrum of the natural product.  相似文献   

20.
This study aims to investigate the neuroprotective effects of Pyrola incarnata against β-amyloid-induced memory impairment in mice. Ethanol extract of Pyrola incarnata (EPI) was obtained and led to eleven phytochemicals successfully by isolation and purification, which were elucidated by spectroscopic analysis (1H NMR, 13C NMR and HR-ESI-MS). Thereinto, ursolic acid was gained as most abundant monomer. C57BL/6 mice were intracerebroventricular injected with aggregated Aβ25–35. Open-field test, Barnes maze test and Morris water maze were conducted for evaluating cognition processes of EPI and ursolic acid. EPI significantly improved learning and memory deficits, attenuated the Aβ25–35 level of deposition immunohistochemically. Further studies revealed that ursolic acid as bioactive phytochemical of P. incarnata improved spatial memory performance and ameliorated Aβ25–35 accumulation by activating microglia cells and up-regulating Iba1 level in the hippocampus. These findings suggest P. incarnata could improve the cognition of mice and be a promising natural source for the treatment of neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号