首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.

Background and Aims

Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal.

Methods

Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos.

Key Results

A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species.

Conclusions

The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades.  相似文献   

2.
Pelophylax esculentus is a hybridogenetic frog originating from matings between P. ridibundus (RR) and P. lessonae (LL). Typically, diploid hybrids (LR) live in sympatry with one of their parental species, upon which they depend for successful reproduction. In parts of their range, however, pure hybrid populations can be found. These hybrid populations have achieved reproductive independence from their parental species by using triploid hybrids (LLR, LRR) rather than LL and RR as their sexual hosts. These different breeding systems also entail differences in reproduction (clonal versus sexual) and hence offer the opportunity to study how genetic diversity is affected by reproductive mode, population structure and geographic location. We investigated 33 populations in the Scania region (South Sweden) and 18 additional populations from Northern and Central Europe. Within both genomes (L, R), genetic variability increases with the potential for recombination and declines from the main species distribution area southeast of the Baltic Sea to the fringe populations northwest of the Baltic Sea. Within the main study area in Scania, genetic diversity is low and decreases from a core area to the periphery. Genetic differentiation between Scania populations is small but significant and best explained by ‘isolation by distance’. Despite the low genetic variability within the discrete genomes, all‐hybrid P. esculentus populations in southern Sweden are apparently not suffering from direct negative fitness effects. This is probably because of its somatic hybrid status, which increases diversity through the combination of genomes from two species.  相似文献   

3.
A major goal in evolutionary biology is to understand how and why populations differentiate, both genetically and phenotypically, as they invade a novel habitat. A classical example of adaptation is the pale colour of beach mice, relative to their dark mainland ancestors, which colonized the isolated sandy dunes and barrier islands on Florida''s Gulf Coast. However, much less is known about differentiation among the Gulf Coast beach mice, which comprise five subspecies linearly arrayed on Florida''s shoreline. Here, we test the role of selection in maintaining variation among these beach mouse subspecies at multiple levels—phenotype, genotype and the environments they inhabit. While all beach subspecies have light pelage, they differ significantly in colour pattern. These subspecies are also genetically distinct: pair-wise Fst-values range from 0.23 to 0.63 and levels of gene flow are low. However, we did not find a correlation between phenotypic and genetic distance. Instead, we find a significant association between the average ‘lightness’ of each subspecies and the brightness of the substrate it inhabits: the two most genetically divergent subspecies occupy the most similar habitats and have converged on phenotype, whereas the most genetically similar subspecies occupy the most different environments and have divergent phenotypes. Moreover, allelic variation at the pigmentation gene, Mc1r, is statistically correlated with these colour differences but not with variation at other genetic loci. Together, these results suggest that natural selection for camouflage—via changes in Mc1r allele frequency—contributes to pigment differentiation among beach mouse subspecies.  相似文献   

4.
A genetic component of resistance to fungal infection in frog embryos   总被引:1,自引:0,他引:1  
The embryo has traditionally been considered to completely rely upon parental strategies to prevent threats to survival posed by predators and pathogens, such as fungi. However, recent evidence suggests that embryos may have hitherto neglected abilities to counter pathogens. Using artificial fertilization, we show that among-family variation in the number of Saprolegnia-infected eggs and embryos in the moor frog, Rana arvalis, cannot be explained by maternal effects. However, analysed as a within-females effect, sire identity had an effect on the degree of infection. Furthermore, relatively more eggs and embryos were infected when eggs were fertilized by sperm from the same, compared with a different, population. These effects were independent of variation in fertilization success. Thus, there is likely to be a significant genetic component in embryonic resistance to fungal infection in frog embryos. Early developmental stages may show more diverse defences against pathogens than has previously been acknowledged.  相似文献   

5.
Partamona is a Neotropical genus of stingless bees that comprises 33 species distributed from Mexico to southern Brazil. These bees are well-adapted to anthropic environments and build their nests in several substrates. In this study, 66 colonies of Partamona helleri from five localities in the Brazilian state of Minas Gerais (São Miguel do Anta, Teixeiras, Porto Firme, Viçosa and Rio Vermelho) were analyzed using nine microsatellite loci in order to assess their genetic variability. Low levels of observed (Ho = 0.099-0.137) and expected (H e = 0.128-0.145) heterozygosity were encountered and revealed discrete genetic differentiation among the populations (F ST = 0.025). AMOVA further showed that most of the total genetic variation (94.24%) in P. helleri was explained by the variability within local populations.  相似文献   

6.
Stochastic population theory makes clear predictions about the effects of reproductive potential and carrying capacity on characteristic time-scales of extinction. At the same time, the effects of habitat size and quality on reproduction and regulation have been hotly debated. To trace the causal relationships among these factors, we looked at the effects of habitat size and quality on extinction time in experimental populations of Daphnia magna. Replicate model systems representative of a broad-spectrum consumer foraging on a continuously supplied resource were established under crossed treatments of habitat size (two levels) and habitat quality (three levels) and monitored until eventual extinction of all populations. Using statistically derived estimates of key parameters, we related experimental treatments to persistence time through their effect on carrying capacity and the population growth rate. We found that carrying capacity and the intrinsic rate of increase were each influenced similarly by habitat size and quality, and that carrying capacity and the intrinsic rate of increase were in turn both correlated with time to population extinction. We expected habitat quality to have a greater influence on extinction. However, owing to an unexpected effect of habitat size on reproductive potential, habitat size and quality were similarly important for population persistence. These results support the idea that improving the population growth rate or carrying capacity will reduce extinction risk and demonstrate that both are possible by improving habitat quality or increasing habitat size.  相似文献   

7.
The genetic diversity and structure of the ant Atta robusta were assessed by ISSR (inter-simple sequence repeats) in 72 colonies collected from 10 localities in the Brazilian states of Espírito Santo (48 colonies) and Rio de Janeiro (24 colonies). The ISSR pattern included 67 bands, 51 of them (76.1%) polymorphic. Analysis of molecular variance (AMOVA) revealed a high level (57.4%) of inter-population variation, which suggested a high degree of genetic structure that was confirmed by UPGMA (unweighted pair-group method using an arithmetic average) cluster analysis. The significant correlation between genetic and geographic distances (r = 0.64, p < 0.05) indicated isolation that reflected the distance between locations. Overall, the populations were found to be genetically divergent. This finding indicates the need for management plans to preserve and reduce the risk of extinction of A. robusta.  相似文献   

8.
9.
Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.  相似文献   

10.
For a study of diversity and genetic structuring in Melipona quadrifasciata, 61 colonies were collected in eight locations in the state of Minas Gerais, Brazil. By means of PCR analysis, 119 ISSR bands were obtained, 80 (68%) being polymorphic. He and H B were 0.20 and 0.16, respectively. Two large groups were obtained by the UPGMA method, one formed by individuals from Januária, Urucuia, Rio Vermelho and Caeté and the other by individuals from São João Del Rei, Barbacena, Ressaquinha and Cristiano Otoni. The Φst and θB values were 0.65 and 0.58, respectively, thereby indicating high population structuring. UPGMA grouping did not reveal genetic structuring of M. quadrifasciata in function of the tergite stripe pattern. The significant correlation between dissimilarity values and geographic distances (r = 0.3998; p < 0.05) implies possible geographic isolation. The genetic differentiation in population grouping was probably the result of an interruption in gene flow, brought about by geographic barriers between mutually close geographical locations. Our results also demonstrate the potential of ISSR markers in the study of Melipona quadrifasciata population structuring, possibly applicable to the studies of other bee species.  相似文献   

11.
C M Sloop  D R Ayres  D R Strong 《Heredity》2011,106(4):547-556
Invasive hybrids and their spread dynamics pose unique opportunities to study evolutionary processes. Invasive hybrids of native Spartina foliosa and introduced S. alterniflora have expanded throughout San Francisco Bay intertidal habitats within the past 35 years by deliberate plantation and seeds floating on the tide. Our goals were to assess spatial and temporal scales of genetic structure in Spartina hybrid populations within the context of colonization history. We genotyped adult and seedling Spartina using 17 microsatellite loci and mapped their locations in three populations. All sampled seedlings were hybrids. Bayesian ordination analysis distinguished hybrid populations from parent species, clearly separated the population that originated by plantation from populations that originated naturally by seed and aligned most seedlings within each population. Population genetic structure estimated by analysis of molecular variance was substantial (FST=0.21). Temporal genetic structure among age classes varied highly between populations. At one population, the divergence between adults and 2004 seedlings was low (FST=0.02) whereas at another population this divergence was high (FST=0.26). This latter result was consistent with local recruitment of self-fertilized seed produced by only a few parental plants. We found fine-scale spatial genetic structure at distances less than ∼200 m, further supporting local seed and/or pollen dispersal. We posit a few self-fertile plants dominating local recruitment created substantial spatial genetic structure despite initial long-distance, human dispersal of hybrid Spartina through San Francisco Bay. Fine-scale genetic structure may more strongly develop when local recruits are dominated by the offspring of a few self-fertile plants.  相似文献   

12.
The Cantabrian capercaillie (Tetrao urogallus cantabricus) occupies the southwestern edge of the grouse family distribution range in Eurasia. It is endemic to the Cantabrian Mountains in northwestern Spain and is geographically isolated and separated from the neighboring population in the Pyrenees by a distance of 300 km. Over the last decades, the population has undergone a dramatic decline and is now threatened with extinction. This study presents the genetic analysis of the Cantabrian capercaillie population using non-invasive samples. We performed genotyping of 45 individuals using 20 microsatellites and a sex marker. The data highlight the need for using a large number of markers when considering fragmented small populations. Genetic diversity (HE = 0.50) and average number of alleles (3.40) in the population were low. The population is fragmented into 2 clusters (FST = 0.113) that fit with areas on both sides of the transportation ways that divide its range. Both clusters exhibited additional heterozygote deficits. Geographical distance was negatively correlated with genetic relatedness (r = −0.44, P ≤ 0.001). The data show a recent decline in effective population size that can be related to an ongoing process of population reduction and fragmentation. Conservation actions should focus on the protection of local demes by maintaining a dense network of suitable patches to maximize reproductive output and the number of potential dispersers to reconnect the 2 subpopulations. © 2012 The Wildlife Society.  相似文献   

13.

Backgound and Aims

Extending the cultivation of forage legume species into regions where they are close to the margin of their natural distribution requires knowledge of population responses to environmental stresses. This study was conducted at three north European sites (Iceland, Sweden and the UK) using AFLP markers to analyse changes in genetic structure over time in two population types of red and white clover (Trifolium pratense and T. repens, respectively): (1) standard commercial varieties; (2) wide genetic base (WGB) composite populations constructed from many commercial varieties plus unselected material obtained from germplasm collections.

Methods

At each site populations were grown in field plots, then randomly sampled after 3–5 years to obtain survivor populations. AFLP markers were used to calculate genetic differentiation within and between original and survivor populations.

Key Results

No consistent changes in average genetic diversity were observed between original and survivor populations. In both species the original varieties were always genetically distinct from each other. Significant genetic shift was observed in the white clover ‘Ramona’ grown in Sweden. The WGB original populations were more genetically similar. However, genetic differentiation occurred between original and survivor WGB germplasm in both species, particularly in Sweden. Regression of climatic data with genetic differentiation showed that low autumn temperature was the best predictor. Within the set of cold sites the highest level of genetic shift in populations was observed in Sweden.

Conclusions

The results suggest that changes in population structure can occur within a short time span in forage legumes, resulting in the rapid formation of distinct survivor populations in environmentally challenging sites.  相似文献   

14.
Orantes LC  Zhang W  Mian MA  Michel AP 《Heredity》2012,109(2):127-134
Heteroecious holocyclic aphids exhibit both sexual and asexual reproduction and alternate among primary and secondary hosts. Most of these aphids can feed on several related hosts, and invasions to new habitats may limit the number of suitable hosts. For example, the aphid specialist Aphis glycines survives only on the primary host buckthorn (Rhamnus spp.) and the secondary host soybean (Glycine max) in North America where it is invasive. Owing to this specialization and sparse primary host distribution, host colonization events could be localized and involve founder effects, impacting genetic diversity, population structure and adaptation. We characterized changes in the genetic diversity and structure across time among A. glycines populations. Populations were sampled from secondary hosts twice in the same geographical location: once after secondary colonization (early season), and again immediately before primary host colonization (late season). We tested for evidence of founder effects and genetic isolation in early season populations, and whether or not late-season dispersal restored genetic diversity and reduced fragmentation. A total of 24 single-nucleotide polymorphisms and 6 microsatellites were used for population genetic statistics. We found significantly lower levels of genotypic diversity and more genetic isolation among early season collections, indicating secondary host colonization occurred locally and involved founder effects. Pairwise F(ST) decreased from 0.046 to 0.017 in early and late collections, respectively, and while genetic relatedness significantly decreased with geographical distance in early season collections, no spatial structure was observed in late-season collections. Thus, late-season dispersal counteracts the secondary host colonization through homogenization and increases genetic diversity before primary host colonization.  相似文献   

15.
House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of F(ST) values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.  相似文献   

16.
Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single 'domestication' event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti.  相似文献   

17.

Background and Aims

Corymbia species from different sections hybridize readily, with some of increasing economic importance to plantation forestry. This study explores the locations of reproductive barriers between interspecific Corymbia hybrids and investigates the reproductive success of a wide taxonomic range of C. torelliana hybrid crosses.

Methods

Pollen, pistil and embryo development were investigated for four C. torelliana crosses (×C. torelliana, ×C. citriodora subsp. citriodora, ×C. tessellaris and ×C. intermedia) using fluorescent and standard microscopy to identify the locations of interspecific reproductive isolating barriers. Corymbia torelliana was also crossed with 16 taxa, representing six of the seven Corymbia sections, both Corymbia subgenera and one species each from the related genera, Angophora and Eucalyptus. All crosses were assessed for capsule and seed yields.

Key Results

Interspecific C. torelliana hybridization was controlled by pre-zygotic reproductive isolating barriers inhibiting pollen adhesion to the stigma, pollen germination, pollen tube growth in the style and pollen tube penetration of the micropyle. Corymbia torelliana (subgenus Blakella, sect. Torellianae) was successfully hybridized with Corymbia species from subgenus Blakella, particularly C. citriodora subsp. citriodora, C. citriodora subsp. variegata, C. henryi (sect. Maculatae) and C. tessellaris (sect. Abbreviatae), and subgenus Corymbia, particularly C. clarksoniana and C. erythrophloia (sect. Septentrionales). Attempted intergeneric hybrids between C. torelliana and either Angophora floribunda or Eucalyptus pellita were unsuccessful.

Conclusions

Corymbia hybrids were formed between species from different sections and subgenera, but not with species from the related genera Angophora or Eucalyptus. Reproductive isolation between the interspecific Corymbia hybrid crosses was controlled by early- and late-acting pre-zygotic isolating barriers, with reproductive success generally decreasing with increasing taxonomic distance between parent species. These findings support the monophyly of Corymbia and the close relationships of infrageneric clades. The hybridizing propensity of Corymbia species provides opportunities for breeding but suggests risks of environmental gene flow.  相似文献   

18.
1. In a region of south‐eastern England, we investigated the hierarchical genetic structure of populations of two stream‐dwelling caddisflies (Trichoptera: Polycentropodidae) with contrasting distributions: Plectrocnemia conspersa inhabits numerous small, patchily distributed seeps and streams, while the confamilial Polycentropus flavomaculatus is found in fewer but larger streams and rivers. We also contrasted the genetic structure of P. conspersa in the lowland south‐east with that in an upland region in the north west. 2. Microsatellite genotypes were obtained from samples of both species taken from a ‘core area’ and at sites 15, 40 and 100 km from this core (two regions for P. conspersa, totalling 45 sites and 1405 larvae; one region for P. flavomaculatus, totalling 10 sites and 269 larvae). 3. The genetic structure of P. conspersa differed in the two regions. In the upland north‐west, significant genetic differentiation was observed at a spatial scale of around 40 km from the core, while there was no structure in the lowland south‐east up to around 100 km. Areas of high altitude did not appear directly to reduce gene flow, whereas other potential landscape barriers, including particular geological formations, large urban areas and the sea had a pronounced effect. 4. Weak genetic differentiation in P. conspersa across large distances, particularly in the lowland south‐east, suggests that it disperses strongly, facilitating gene flow within and between catchments. Conversely, for P. flavomaculatus we found strong genetic differentiation between almost all sites, suggesting that dispersal is much more limited. 5. Greater dispersal in the patchily distributed P. conspersa than in P. flavomaculatus, which occupies larger and presumably more persistent habitats, could be a general feature of other similarly distributed aquatic insects. While higher relief is potentially a partial barrier to dispersal, P. conspersamust have effective gene flow through such apparently inhospitable terrain, perhaps attributable to dispersal between neighbouring small and ephemeral populations. Indeed, its exploitation of headwaters and seeps requires the ability to disperse between such sites. Apparently it cannot, however, overcome more continuous barriers, consisting of large tracts of landscape with few habitable larval sites. Such landscapes, including those created by humans, may have a stronger effect on population connectivity and colonization in the longer term.  相似文献   

19.
Human‐caused habitat destruction and modification constitute one of the largest threats to population persistence and biodiversity, and are also suspected to be the major cause behind the global decline of amphibian populations. We assessed the potential role of agriculture‐related habitat fragmentation on population size and genetic variability in the common frog (Rana temporaria) by recording the occurrence, population density and genetic diversity in three geographically disparate regions in Sweden – each containing landscapes of high and low agricultural activity – and related these to landscape variables extracted from digital maps. We found a highly significant region‐by‐landscape interaction in occurrence, population density and genetic diversity revealing a reversed response to agriculture from south to north: while the effects of agriculture on R. temporaria populations were negative in the south, there were no effects in the central region, whereas positive effects were observed in the north. Spatial autocorrelation analyses of genetic data revealed that populations in high agricultural activity areas were more isolated than populations in low activity areas both in the southern and central regions of Sweden. Landscape diversity showed a strong positive correlation with both density and occurrence of frogs in Sweden as a whole, as well as in the southern region. Also, negative effects of roads and positive effects of ditches on genetic diversity were found in the south. Overall, these results suggest clear but regionally opposite effects of habitat structure on the population size and genetic diversity of amphibian populations. This means that the management strategy aiming to maximize the size and genetic diversity of local common frog populations, and perhaps also those of other amphibian populations, should account for regional differences in existing land‐use patterns.  相似文献   

20.
Amphibians in the south-western United States are currently experiencing population declines. Causal explanations for these population changes as well as the implementation of sound management practices requires an understanding of the genetic structure of natural amphibian populations. To this end, we estimated genetic differences within and among seven isolated populations of northern leopard frogs, Rana pipiens , from Arizona and southern Utah using random amplified polymorphic DNA (RAPD) analyses. Fourteen arbitrarily designed primers detected 38 polymorphic loci in 85 individual frogs. Three types of population structure were observed in this study. (i) Two populations showed low genetic diversity ( D = 0.10 and 0.04) and may have been established by relatively recent events. (ii) Two were not genetically distinct and exhibited a high degree of within-population diversity ( D = 0.35). The possibility of gene flow between these populations is high due to their geographical proximity and their shared genetic structure. (iii) Three populations were genetically distinct from each other and the other populations, and exhibited intermediate within-population variation ( D = 0.19, 0.17, 0.14). Genetic distances among the seven populations ranged from 0.00 to 0.20, suggesting that some of these leopard frog populations are genetically distinct. Although based on relatively small samples, these data suggest that leopard frog populations in the south-west are likely to represent unique genetic entities worthy of conservation. The management implications of these results are that isolated leopard frog populations should be evaluated on an individual basis to best preserve them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号