首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Twenty-two ornamental flowers from different Adenium obesum, Mandevilla sanderi, and Nerium oleander cultivars/seedlings were analyzed for the presence of anthocyanins, flavonols, and chlorogenic acid using nuclear magnetic resonance (NMR) and mass spectrometry (MS). Cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the major and minor anthocyanins, respectively, in three A. obesum seedlings that had red and red-purple flowers.Cyanidin 3-O-[2-O-(xylosyl)-galactoside] was identified as the major anthocyanin, whereas cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the minor anthocyanins in 8 M. sanderi cultivars that had red and red-purple flowers. Cyanidin 3-O-[6-O-(rhamnosyl)-galactoside] and cyanidin 3-O-(galactoside) were identified as the major anthocyanins, whereas cyanidin 3-O-[2-O-(xylosyl)-galactoside] was identified as the minor anthocyanin in 8 N. oleander cultivars with red and red-purple flowers. Low levels of anthocyanins were detected in the N. oleander and M. sanderi cultivars that had white flowers, and there were no anthocyanins detected in the N. oleander cultivars with yellow flowers. Chlorogenic acid and four flavonols, quercetin 3-O-[6-O-(rhamnosyl)-galactoside], quercetin 3-O-[6-O-(rhamnosyl)-glucoside], kaempferol 3-O-(galactoside), and kaempferol 3-O-[6-O-(rhamnosyl)-galactoside], were identified in the flowers from all 22 cultivars/seedlings investigated.  相似文献   

2.
Anthocyanins are red, purple, or blue plant pigments that belong to the family of polyphenolic compounds collectively called flavonoids. Their demonstrated antioxidant properties and economic importance to the dye, fruit, and cut-flower industries have driven intensive research into their metabolic biosynthetic pathways. In order to produce stable, glycosylated anthocyanins from colorless flavanones such as naringenin and eriodictyol, a four-step metabolic pathway was constructed that contained plant genes from heterologous origins: flavanone 3β-hydroxylase from Malus domestica, dihydroflavonol 4-reductase from Anthurium andraeanum, anthocyanidin synthase (ANS) also from M. domestica, and UDP-glucose:flavonoid 3-O-glucosyltransferase from Petunia hybrida. Using two rounds of PCR, each one of the four genes was first placed under the control of the trc promoter and its own bacterial ribosome-binding site and then cloned sequentially into vector pK184. Escherichia coli cells containing the recombinant plant pathway were able to take up either naringenin or eriodictyol and convert it to the corresponding glycosylated anthocyanin, pelargonidin 3-O-glucoside or cyanidin 3-O-glucoside. The produced anthocyanins were present at low concentrations, while most of the metabolites detected corresponded to their dihydroflavonol precursors, as well as the corresponding flavonols. The presence of side product flavonols is at least partly due to an alternate reaction catalyzed by ANS. This is the first time plant-specific anthocyanins have been produced from a microorganism and opens up the possibility of further production improvement by protein and pathway engineering.  相似文献   

3.
Anthocyanins are major color pigments in plants. Their biosynthetic pathways are well established, and the majority of these biosynthetic enzymes have been identified in model plants such asArabidopsis, maize, and petunia. One exception inArabidopsis is UDP-glucose:flavonoid 3-O-glucosyltransferase (UF3GT). This enzyme is known as Bronze-1 (Bz1 ) in maize, where it converts anthocyanidins to anthocyanins. Phylogenetic sequence analysis of theArabidopsis thaliana UDP-glycosyltransferase (UGT) family previously indicated that UGT78D1, UGT78D2, and UGT78D3 cluster together with UF3GTs from other species. Here, we report thatUGT78D2 encodes a cytosolic UGT that is functionally consistent with maize Bz-1. Biochemically, UGT78D2 catalyzes the glucosylation of both flavonols and anthocyanidins at the 3-OH position. A T-DNA-insertedugt78d2 mutant accumulates very little anthocyanin and lacks 3-O-glucosylated quercetin. Expression analysis indicated thatUGT78D2, in opposite toBANYULS, is highly expressed in anthocyanin-accumulating seedlings but repressed in condensed tannin-accumulating seed coats. This suggests that the reciprocal regulation of these two genes is important in directing the metabolic flux to either anthocyanins or condensed tannins. Consistent with this, the ectopic expression of UGT78D2 produces purple-colored seed coats due to the accumulation of anthocyanins. Taken together, our data indicate thatUGT78D2 encodes an enzyme equivalent to maize Bz1, and that the reciprocal regulation of UGT78D2 and BANYULS is critical for the regulation of metabolic flux of anthocyanidins inArabidopsis.  相似文献   

4.
Blue flowers of six Bhutani Meconopsis species, M. bhutanica, M. bella, M. horridula, M. simplicifolia, M. primulina and M. polygonoides, were surveyed for anthocyanins and other flavonoids. Four anthocyanins were isolated and identified as cyanidin 3-O-sambubioside-7-O-glucoside (1), cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)]-7-O-glucoside (2), cyanidin 3-O-sambubioside (4) and cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)] (5). On the other hand, 12 flavonols were isolated from their Meconopsis species with various combination and characterized as kaempferol 3-O-glycosides (812), kaempferol 3,7-O-glycosides (1316), quercetin 3-O-glycosides (17 and 18) and isorhamnetin 3-O-glycoside (19). Of six Meconopsis species which were surveyed in this experiment, anthocyanin and flavonol composition of five species except for M. horridula was clarified for the first time. Their Meconopsis species showed the different flavonoid profiles, respectively, and flavonoid diversity within the glycosylation level of Meconopsis flowers were indicated.  相似文献   

5.
Glucosylation of anthocyanidin substrates at the 3-O-position is crucial for the red pigmentation of grape berries and wine. The gene that encodes the enzyme involved in this reaction has been cloned from Vitis labrusca cv. Concord, heterologously expressed, and the recombinant enzyme (rVL3GT) was characterized. VL3GT has 96% amino acid sequence identity with Vitis vinifera VV3GT and groups phylogenetically with several other flavonoid 3-O-glycosyltransferases. In vitro substrate specificity studies and kinetic analyses of rVL3GT indicate that this enzyme preferentially glucosylates cyanidin as compared with quercetin. Crude protein extracts from several Concord grape tissues were assayed for glucosyltransferase activity with cyanidin and quercetin as acceptor substrates. A comparison of the VL3GT activities toward with these substrates showed that the 3GT enzyme activity is consistent with the expression of VL3GT in these tissues and is coincident with the biosynthesis of anthocyanins in both location and developmental stages. Enzyme activities in grape mesocarp, pre-veraison exocarp, leaf, flower bud, and flower tissues glucosylated quercetin but not cyanidin at high rates, suggesting the presence of additional enzymes which are able to glucosylate the 3-O-position of flavonols with higher specificity than anthocyanidins.  相似文献   

6.
In order to provide additional information on the coloration of chrysanthemum flowers, the flavonoid composition and the expression of six structural genes involved in anthocyanin pathway in the ray florets of a pink flowering (cv. H5) and two white flowering (cvs. Keikai and Jinba) Chrysanthemum grandiflorum cultivars were examined. HPLCDAD/ESI-MSn analysis showed that cyanidin 3-O-(6″-O-malonylglucoside) and cyanidin 3-O-(3″,6″-O-dimalonylglucoside) were the two major flavonoids presented in H5, while white flowering cultivars contained flavones instead of anthocyanins. Nine flavone derivatives were detected in the three cultivars, the amount of each flavone varied upon cultivars, and seven of these were identified as luteolin 7-O-arabinosylglucuronide, apigenin 7-O-glucoside, luteolin 7-O-malonylglucoside, apigenin 7-O-malonylglucoside, chrysoeriol 7-O-malonylglucoside, acacetin 7-O-rutinoside and acacetin 7-O-malonylglucoside. The two white flowering cultivars showed similar total flavonoid content, which was about two fold higher than that in H5. A high expression of the genes encoding dihydroflavonol 4-reductase and 3-O-glucosyltransferase was detected only in H5 but not in Keikai or Jinba. Chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, and flavonoid 3′-hydroxylase were expressed in all flowers, suggesting that the lack of anthocyanin in white flowering cultivars cannot be due to any blockage of their expression.  相似文献   

7.
8.
Glycosylation is one of the key modification steps for plants to produce a broad spectrum of flavonoids with various structures and colors. A survey of flavonoids in the blue flowers of Veronica persica Poiret (Lamiales, Scrophulariaceae), which is native of Eurasia and now widespread worldwide, led to the identification of highly glycosylated flavonoids, namely delphinidin 3-O-(2-O-(6-O-p-coumaroyl-glucosyl)-6-O-p-coumaroyl-glucoside)-5-O-glucoside (1) and apigenin 7-O-(2-O-glucuronosyl)-glucuronide (2), as two of its main flavonoids. Interestingly, the latter flavone glucuronide (2) caused a bathochromic shift on the anthocyanin (1) toward a blue hue in a dose-dependent manner, showing an intermolecular co-pigment effect. In order to understand the molecular basis for the biosynthesis of this glucuronide, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT88D8), based on the structural similarity to flavonoid 7-O-glucuronosyltransferases (F7GAT) from Lamiales plants. Enzyme assays showed that the recombinant UGT88D8 protein catalyzes the 7-O-glucuronosylation of apigenin and its related flavonoids with preference to UDP-glucuronic acid as a sugar donor. Furthermore, we identified and functionally characterized a cDNA encoding another UGT, UGT94F1, as the anthocyanin 3-O-glucoside-2″-O-glucosyltransferase (A3Glc2″GlcT), according to the structural similarity to sugar-sugar glycosyltransferases classified to the cluster IV of flavonoid UGTs. Preferential expression of UGT88D8 and UGT94F1 genes in the petals supports the idea that these UGTs play an important role in the biosynthesis of key flavonoids responsible for the development of the blue color of V. persica flowers.  相似文献   

9.
《Phytochemistry》1987,26(8):2417-2418
Re-examination of the anthocyanin pigments ofZea mays leaf showed the presence of cyanidin 3-(6″-malonyiglucoside) and cyanidin 3-dimalonylglucoside. The same two pigments are probably present in the seed coat. This represents the first complete identification of malonated anthocyanins in the Gramineae.  相似文献   

10.
UDP‐glucose: anthocyanidin 3‐O‐glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP‐glucose to anthocyanidins such as delphinidin. After the acylation of the 3‐O‐glucosyl residue, the 3′‐ and 5′‐hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor‐recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin‐ and flavonol‐acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3‐hydroxyl groups of the acceptor substrates were located at hydrogen‐bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3‐hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1–O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5‐ and 7‐hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments.  相似文献   

11.
Three anthocyanins (13) and eight flavonols (411) were isolated from the flowers of Amherstia nobilis endemic to Myanmar. Anthocyanins were identified as cyanidin 3-O-glucoside (1), 3-O-xyloside (2), and peonidin 3-O-glucoside (3). On the other hand, flavonols were identified as isorhamnetin 3-O-glucoside (4), 7-O-glucoside (5), 3,7-di-O-glucoside (6) and 3-O-rutinoside (7), quercetin 3-O-rutinoside (8) and 3-O-glucoside (9), and kaempferol 3-O-rutinoside (10) and 3-O-glucoside (11). Although an anthocyanin, pelargonidin 3-O-pentoside, has been reported from the flowers of A. nobilis, it was not found in this survey. The presence of flavonols in A. nobilis was reported in this survey for the first time. Flavonoid composition of Amherstia was chemotaxonomically compared with those of phylogenetically related genera Cynometra and Brownea.  相似文献   

12.

Main conclusion

This study confirmed pigment profiles in different colour groups, isolated key anthocyanin biosynthetic genes and established a basis to examine the regulation of colour patterning in flowers of Cymbidium orchid. Cymbidium orchid (Cymbidium hybrida) has a range of flower colours, often classified into four colour groups; pink, white, yellow and green. In this study, the biochemical and molecular basis for the different colour types was investigated, and genes involved in flavonoid/anthocyanin synthesis were identified and characterised. Pigment analysis across selected cultivars confirmed cyanidin 3-O-rutinoside and peonidin 3-O-rutinoside as the major anthocyanins detected; the flavonols quercetin and kaempferol rutinoside and robinoside were also present in petal tissue. β-carotene was the major carotenoid in the yellow cultivars, whilst pheophytins were the major chlorophyll pigments in the green cultivars. Anthocyanin pigments were important across all eight cultivars because anthocyanin accumulated in the flower labellum, even if not in the other petals/sepals. Genes encoding the flavonoid biosynthetic pathway enzymes chalcone synthase, flavonol synthase, flavonoid 3′ hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were isolated from petal tissue of a Cymbidium cultivar. Expression of these flavonoid genes was monitored across flower bud development in each cultivar, confirming that DFR and ANS were only expressed in tissues where anthocyanin accumulated. Phylogenetic analysis suggested a cytochrome P450 sequence as that of the Cymbidium F3′H, consistent with the accumulation of di-hydroxylated anthocyanins and flavonols in flower tissue. A separate polyketide synthase, identified as a bibenzyl synthase, was isolated from petal tissue but was not associated with pigment accumulation. Our analyses show the diversity in flower colour of Cymbidium orchid derives not from different individual pigments but from subtle variations in concentration and pattern of pigment accumulation.
  相似文献   

13.
3-Deoxyanthocyanins are rare anthocyanin pigments produced by some mosses, ferns, and higher plants. The enzymes and genes responsible for biosynthesis of 3-deoxyanthocyanins have not been well characterized. We identified a novel gene encoding UDP-glucose:3-deoxyanthocyanidin 5-O-glucosyltransferase (dA5GT) from Sinningia cardinalis, which accumulates abundant 3-deoxyanthocyanins in its petals. Five candidate genes (ScUGT1 to ScUGT5) were isolated from an S. cardinalis flower cDNA by degenerate PCR targeted for the UGT88 clade. ScUGT1, ScUGT3, and ScUGT5 exhibited 45–47% identity with rose anthocyanidin 5,3-O-glucosyltransferase, which catalyzes glucosylation at the 5- and 3-position of 3-hydroxyanthocyanidin. Based on its temporal and spatial gene expression patterns, and enzymatic activity assays of the recombinant protein, ScUGT5 was screened as a dA5GT candidate. Recombinant ScUGT5 protein expressed in Escherichia coli was used to analyze the detailed enzymatic properties. The results demonstrated that ScUGT5 specifically transferred a glucosyl moiety to 3-deoxyanthocyanidins in the presence of UDP-glucose, but not to other flavonoid compounds, such as 3-hydroxyanthocyanidins, flavones, flavonols, or flavanones.  相似文献   

14.
Three anthocyanins, four flavonols, three aromatic acids and five gallotannins were isolated from Sapria himalayana f. albovinosa in Myanmar. They were identified as cyanidin 3-O-glucoside (1), cyanidin 3-O-xyloside (2) and peonidin 3-O-glucoside (3) (anthocyanins), quercetin 3-O-glucoside (4), quercetin 7-O-glucoside (5), quercetin 3-O-glucuronide (6) and isorhamnetin 3-O-glucoside (7) (flavonols), ellagic acid (8), gallic acid (9) and ethyl gallate (10) (aromatic acids), and 1,2,4,6-tetragalloylglucose (11), 1,4,6-trigalloylglucose (12), 1,2,6-trigalloylglucose (13), 1,2,4-trigalloylglucose (14) and 1,6-digalloylglucose (15) (gallotannins) by UV, LC-MS, acid hydrolysis, NMR and/or HPLC comparisons with authentic samples. The chemical composition of S. myanmarensis was qualitatively the same with that of S. himalayana f. albovinosa. Phenolic compounds of the Rafflesiaceae species including Sapria, Rafflesia and Rhizanthes were isolated and identified in this survey for the first time.  相似文献   

15.
Root restriction was applied to ‘Summer black’ grape (Vitis vinifera L. × Vitis labrusca L.) to investigate its effect on anthocyanin biosynthesis in grape berry during development. Anthocyanin composition and expression patterns of 16 genes in anthocyanin pathway were thus analyzed. The results showed that the anthocyanin levels in berry skin were significantly increased and the anthocyanin profile was enriched. Gene expression pattern revealed that the increased anthocyanins coincide with the up-regulated expression of all 16 genes investigated, including phenylalanine ammonia-lyase, 4-coumarate CoA ligase, chalcone synthase 1, chalcone synthase 2, chalcone synthase 3, chalcone isomerase, flavanone 3-hydroxylase 1, flavanone 3-hydroxylase 2, flavonoid 3′-hydroxylase (F3′H), flavonoid 3′,5′-hydroxylase (F3′5′H), di-hydroflavonol 4-reductase, leucoanthocyanidin dioxygenase, O-methyltransferases (OMT), UDP-glucose:flavonoid 3-O-glucosyl-transferase (3GT), UDP-glucose:flavonoid 5-O-glucosyl-transferase (5GT) and glutathione S-transferase (GST). The increased total anthocyanins predominantly resulted from the increase of tri-hydroxylated, methoxylated and mono-glycosylated rather than di-hydroxylated, non-methoxylated, and di-glycosylated forms, which might be due to the differential regulation of F3′5′H/F3′H, OMT and 3GT, respectively.  相似文献   

16.
17.
18.
Fifteen flavonoids were isolated from flowers and leaves of four species ofWeigela [W. florida (Bunge) A. DC.,W. praecox (Lemoine) Bailey,W. hortensis (Sieb. et Zucc.) K. Koch, andW. subsessilis (Nakai) Bailey] of Korea and one species (W. coraeensis Thunb.) of Japan. The flavonoid data indicated the presence of two distinct chemical groups: the “yellow flower” type producing flavonols and the “red flower” type producing flavonols and flavones. Two cyanidin 3-O-glycosides (glucoside and glucose-xylose) also occurred in all examined taxa. In the floral color-changing species,W. subsessilis, only quercetin glycosides predominated in floral tissue at first, decreasing in number and quantity with time. Instead, cyanidin 3-O-glycosides became present predominantly in flower color changing tissue from yellow to mauve.Weigela florida produced apigenin and luteolin glycosides, along with cyanidin 3-O-glycosides, which were also found inW. subsessilis. Within a relatively limited number of individuals (five),W. hortensis was unique in its production of all flavonols, flavones, and anthocyanins, although two individuals lacked flavone compounds but possessed all flavonols and anthocyanins. In effect, the putative hybrid,W. hortensis of Korea showed additive profiles of the parental marker compounds ofW. subsessilis andW. florida. Pollinator (andrenid bees) non-discrimination betweenWeigela flower-color morphs leading to non-assortive mating was a common, which indicated no breeding barrier among species. This flavonoid study indicated that species of both sections,Weigela andCalysphyrum appeared in each chemical grouping and it was obvious that the arrangement based on flavonoids cut across the sectional treatment of Hara. Floral tissues may be directly involved in the evolutionary strategy of pollination mechanisms and hence, their inherent flavonoids may no longer support taxonomic relationships. The presence of flavone glycosides inWeigela would support that tribe Dievilleae have a closer affinity to tribe Lonicereae within the Family Caprifoliaceae.  相似文献   

19.
Four anthocyanins, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside)-5-O-β-glucopyranoside, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside), cyanidin 3-O-(2″-(5?-(E-caffeoyl)-β-apiofuranosyl)-β-xylopyranoside) and cyanidin 3-O-(2″-(5?-(E-feroyl)-β-apiofuranosyl)-β-xylopyranoside) were isolated from leaves of African milk bush, (Synadeniumgrantii Hook, Euphorbiaceae) together with the known cyanidin 3-O-β-xylopyranoside-5-O-β-glucopyranoside and cyanidin 3-O-β-xyloside. The four former pigments are the first reported anthocyanins containing the monosaccharide apiose, and the three 5?-cinnamoyl derivative-2″-(β-apiosyl)-β-xyloside subunits have previously not been reported for any compound.  相似文献   

20.
Citrus paradisi 3-O-glucosyltransferase (Cp3GT, Genbank Protein ID: ACS15351) and Citrus sinensis 3-O-glucosyltransferase (Cs3GT, Genbank Protein ID: AAS00612.2) share 95% amino acid sequence identity. Cp3GT was previously established as a flavonol-specific 3-O-glucosyltransferase by direct enzymatic analysis. Cs3GT is annotated as a flavonoid-3-O-glucosyltransferase and predicted to use anthocyanidins as substrates based on gene expression analysis correlated with the accumulation of anthocyanins in C. sinensis cv. Tarocco, a blood orange variety. Mutant enzymes in which amino acids found in Cs3GT were substituted for position equivalent residues in Cp3GT were generated, heterologously expressed in yeast, and characterized for substrate specificity. Structure–function relationships were investigated for wild type and mutant glucosyltransferases by homology modelling using a crystallized Vitis vinifera anthocyanidin/flavonol 3-O-GT (PDB: 2C9Z) as template and subsequent substrate docking. All enzymes showed similar patterns for optimal temperature, pH, and UDP/metal ion inhibition with differences observed in kinetic parameters. Although changes in the activity of the mutant proteins as compared to wild type were observed, cyanidin was never efficiently accepted as a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号