首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to identify the role of phospholipase D2 (PLD2) in lipopolysaccharide (LPS)-induced nitric oxide (NO) synthesis. LPS enhanced NO synthesis and inducible nitric oxide synthase (iNOS) expression in macrophage cell line, Raw 264.7 cells. When Raw 264.7 cells were stimulated with LPS, the expressions of PLDs were increased. Thus, to investigate the role of PLD in NO synthesis, we transfected PLD1, PLD2, and their dominant negative forms to Raw 264.7 cells, respectively. Interestingly, only PLD2 overexpression, but not that of PLD1, increased NO synthesis and iNOS expression. Moreover, LPS-induced NO synthesis and iNOS expression were blocked by PLD2 siRNA, suggesting that LPS upregulates NO synthesis through PLD2. Next, we investigated the S6K1-p42/44 MAPK-STAT3 signaling pathway in LPS-induced NO synthesis mechanism. Knockdown of PLD2 with siRNA also decreased phosphorylation of S6K1, p42/44 MAPK and STAT3 induced by LPS. Furthermore, we found that STAT3 bound with the iNOS promoter, and their binding was mediated by PLD2. Taken together, our results demonstrate the importance of PLD2 for LPS-induced NO synthesis in Raw 264.7 cells with involvement of the S6K1-p42/44 MAPK-STAT3 pathway.  相似文献   

2.
3.
Fucoidan has shown numerous biological actions; however, the molecular bases of these actions have being issued. We examined the effect of fucoidan on NO production induced by IFN‐γ and the molecular mechanisms underlying these effects in two types of cells including glia (C6, BV‐2) and macrophages (RAW264.7, peritoneal primary cells). Fucoidan affected IFN‐γ‐induced NO and/or iNOS expression both in macrophages and glial cells but in a contrast way. Our data showed that in C6 glioma cells both JAK/STAT and p38 signaling positively regulated IFN‐γ‐induced iNOS, which were inhibited by fucoidan. In contrast, in RAW264.7 cells JAK/STAT is a positive regulator whereas p38 is a negative regulator of NO/iNOS production. In RAW264.7 cells, fucoidan enhanced p38 activation and induced TNF‐α production. We also confirmed the dual regulation of p38 in BV‐2 microglia and primary peritoneal macrophages. From these results, we suggest that fucoidan affects not only IFN‐γ‐induced NO/iNOS production differently in brain and peritoneal macrophages due to the different roles of p38 but the effects on TNF‐α production in the two cell types. These novel observations including selective and cell‐type specific effects of fucoidan on IFN‐γ‐mediated signaling and iNOS expression raise the possibility that it alters the sensitivity of cells to the p38 activation. J. Cell. Biochem. 111: 1337–1345, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
Cigarette smoking is a major pathogenic factor in lung cancer. Macrophages play an important role in host defense and adaptive immunity. These cells display diverse phenotypes for performing different functions. M2 type macrophages usually exhibit immunosuppressive and tumor-promoting characteristics. Although macrophage polarization toward the M2 phenotype has been observed in the lungs of cigarette smokers, the molecular basis of the process remains unclear. In this study, we evaluated the possible mechanisms for the polarization of mouse macrophages that are induced by cigarette smoking (CS) or cigarette smoke extract (CSE). The results showed that exposure to CSE suppressed the production of reactive oxygen species (ROS) and nitric oxide (NO) and down-regulated the phagocytic ability of Ana-1 cells. The CD163 expressions on the surface of macrophages from different sources were significantly increased in in vivo and in vitro studies. The M1 macrophage cytokines TNF-α, IL-12p40 and enzyme iNOS decreased in the culture supernatant, and their mRNA levels decreased depending on the time and concentration of CSE. In contrast, the M2 phenotype macrophage cytokines IL-10, IL-6, TGF-β1 and TGF-β2 were up-regulated. Moreover, phosphorylation of JAK2 and STAT3 was observed after the Ana-1 cells were treated with CSE. In addition, pretreating the Ana-1 cells with the STAT3 phosphorylation inhibitor WP1066 inhibited the CSE-induced CD163 expression, increased the mRNA level of IL-10 and significantly decreased the mRNA level of IL-12. In conclusion, we demonstrated that the M2 polarization of macrophages induced by CS could be mediated through JAK2/STAT3 pathway activation.  相似文献   

6.
In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-kappaB (NF-kappaB) and CCAAT/enhancer-binding protein beta (C/EBPbeta), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPbeta DNA-binding activity and NF-kappaB activation.  相似文献   

7.
8.
High-output nitric oxide (NO) production from activated macrophages, resulting from the induction of inducible NO synthase (iNOS) expression, represents a major mechanism for macrophage cytotoxicity against pathogens. However, despite its beneficial role in host defense, sustained high-output NO production was also implicated in a variety of acute inflammatory diseases and autoimmune diseases. Therefore, the down-regulation of iNOS expression during an inflammatory process plays a significant physiological role. This study examines the role of two immunomodulatory neuropeptides, the vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), on NO production by LPS-, IFN-gamma-, and LPS/IFN-gamma-stimulated peritoneal macrophages and the Raw 264.7 cell line. Both VIP and PACAP inhibit NO production in a dose- and time-dependent manner by reducing iNOS expression at protein and mRNA level. VPAC1, the type 1 VIP receptor, which is constitutively expressed in macrophages, and to a lesser degree VPAC2, the type 2 VIP receptor, which is induced upon macrophage activation, mediate the effect of VIP/PACAP. VIP/PACAP inhibit iNOS expression and activity both in vivo and in vitro. Two transduction pathways appear to be involved, a cAMP-dependent pathway that preferentially inhibits IFN regulatory factor-1 transactivation and a cAMP-independent pathway that blocks NF-kappa B binding to the iNOS promoter. The down-regulation of iNOS expression, together with previously reported inhibitory effects on the production of the proinflammatory cytokines IL-6, TNF-alpha, and IL-12, and the stimulation of the anti-inflammatory IL-10, define VIP and PACAP as "macrophage deactivating factors" with significant physiological relevance.  相似文献   

9.
Bacterial DNA (CpG DNA) induces macrophage activation and the production of inflammatory mediators, including tumor necrosis factor (TNF) and nitric oxide (NO) by these cells. However, the role of bacterial DNA in the macrophage response to whole bacteria is unknown. We used overlapping strategies to estimate the relative contribution of bacterial DNA to the upregulation of TNF and NO production in macrophages stimulated with antibiotic-treated group B streptococci (GBS). Selective inhibitors of the bacterial DNA/TLR9 pathway (chloroquine, an inhibitory oligonucleotide, and DNase I) consistently inhibited GBS-induced TNF secretion by 35-50% in RAW 264.7 macrophages and murine splenic macrophages, but had no effect on inducible nitric oxide synthase (iNOS) accumulation or NO secretion. Similarly, splenic and peritoneal macrophages from mice lacking TLR9 expression secreted 40% less TNF than macrophages from control mice after GBS challenge but accumulated comparable amounts of iNOS protein. Finally, studies in both RAW 264.7 cells and macrophages from TLR9-/- mice implicated GBS DNA in the upregulation of interleukins 6 (IL-6) and 12 (IL-12) but not interferon-beta (IFNbeta), a key intermediary in macrophage production of iNOS/NO. Our data suggest that the bacterial DNA/TLR9 pathway plays an important role in stimulating TNF rather than NO production in macrophages exposed to antibiotic-treated GBS, and that TLR9-independent upregulation of IFNbeta production by whole GBS may account for this difference.  相似文献   

10.
Arginine is a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The competition between iNOS and arginase for arginine contributes to the outcome of several parasitic and bacterial infections. Salmonella infection in macrophage cell line RAW264.7 induces iNOS. Because the availability of l-arginine is a major determinant for nitric oxide (NO) synthesis, we hypothesize that in the Salmonella infected macrophages NO production may be regulated by arginase. Here we report for the first time that Salmonella up-regulates arginase II but not arginase I isoform in RAW264.7 macrophages. Blocking arginase increases the substrate l-arginine availability to iNOS for production of more nitric oxide and perhaps peroxynitrite molecules in the infected cells allowing better killing of virulent Salmonella in a NO dependent manner. RAW264.7 macrophages treated with iNOS inhibitor Aminoguanidine reverts the attenuation in arginase-blocked condition. Further, the NO block created by Salmonella was removed by increasing concentration of l-arginine. The whole-mice system arginase I, although constitutive, is much more abundant than the inducible arginase II isoform. Inhibition of arginase activity in mice during the course of Salmonella infection reduces the bacterial burden and delays the disease outcome in a NO dependent manner.  相似文献   

11.
12.
Signal regulatory protein alpha (SIRPalpha) is a glycoprotein receptor that recruits and signals via the tyrosine phosphatases SHP-1 and SHP-2. In macrophages SIRPalpha can negatively regulate the phagocytosis of host cells and the production of tumor necrosis factor alpha. Here we provide evidence that SIRPalpha can also stimulate macrophage activities, in particular the production of nitric oxide (NO) and reactive oxygen species. Ligation of SIRPalpha by antibodies or soluble CD47 triggers inducible nitric oxide synthase expression and production of NO. This was not caused by blocking negative-regulatory SIRPalpha-CD47 interactions. SIRPalpha-induced NO production was prevented by inhibition of the tyrosine kinase JAK2. JAK2 was found to associate with SIRPalpha in macrophages, particularly after SIRPalpha ligation, and SIRPalpha stimulation resulted in JAK2 and STAT1 tyrosine phosphorylation. Furthermore, SIRPalpha-induced NO production required the generation of hydrogen peroxide (H(2)O(2)) by a NADPH oxidase (NOX) and the phosphatidylinositol 3-kinase (PI3-K)-dependent activation of Rac1, an intrinsic NOX component. Finally, SIRPalpha ligation promoted SHP-1 and SHP-2 recruitment, which was both JAK2 and PI3-K dependent. These findings demonstrate that SIRPalpha ligation induces macrophage NO production through the cooperative action of JAK/STAT and PI3-K/Rac1/NOX/H(2)O(2) signaling pathways. Therefore, we propose that SIRPalpha is able to function as an activating receptor.  相似文献   

13.
As well as superoxide generated from neutrophils, nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) in macrophages plays an important role in inflammation. We previously showed that 6-formylpterin, a xanthine oxidase inhibitor, has a superoxide scavenging activity. In the present study, to elucidate other pharmacological activities of 6-formylpterin, we investigated the effects of 6-formylpterin on production of nitric oxide (NO) in the murine macrophage cell line RAW 264.7 stimulated by lipopolysaccharide (LPS) and interferon-gamma (INF-gamma). 6-Formylpterin suppressed the expression of iNOS, and it also inhibited the catalytic activity of iNOS, which collectively resulted in the inhibition of NO production in the stimulated macrophages. However, 6-formylpterin did not scavenge the released NO from an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). These results indicate that 6-formylpterin inhibits pathological NO generation from macrophages during inflammation, but that it does not disturb the physiological action of NO released from other sources.  相似文献   

14.
Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.  相似文献   

15.
16.
17.
18.
Mushroom-derived polysaccharides like β-glucan are being investigated for therapeutic properties for a long time, but their mode of action of immunomodulatory properties is not well established. In the present study, a heteroglucan from Astraeus hygrometricus designated as AE2 is investigated for its macrophage stimulatory properties using RAW 264.7 cell line. An augmentation of nitric oxide production is observed in the presence of AE2 in a dose-dependent manner due to up-regulation of iNOS (inducible NO synthase) expression; hence NF κB (nuclear factor κB) pathway is investigated. RAW 264.7 cells endured phosphorylation of Ikk (IκB kinase) and subsequently NF κB is translocated to the nucleus. Further, the PKC (protein kinase C) level of the cells enhanced significantly. We also found that AE2 could induce the phosphorylation of p38 MAPK (mitogen-activated protein kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2), MEK (MAPK/ERK kinase) and JNK (c-Jun N-terminal kinase), whereas it failed to induce phosphorylation of JAK2 (Janus kinase 2) and STAT1. These results indicated that the macrophage activation by AE2 might be exerted, at least in part, via MAPKs (mitogen-activated protein kinases) pathway of signal transduction.  相似文献   

19.
Reactive molecules O(-)(2), H(2)O(2), and nitrogen monoxide (NO) are produced from macrophages following exposure to lipopolysaccharide (LPS) and involved in cellular signaling for gene expression. Experiments were carried out to determine whether these molecules regulate inducible nitric oxide synthase (iNOS) gene expression in RAW264.7 macrophages exposed to LPS. NO production was inhibited by the antioxidative enzymes catalase, horseradish peroxidase, and myeloperoxidase but not by superoxide dismutase (SOD). In contrast, the NO-producing activity of LPS-stimulated RAW264.7 cells was enhanced by the NO scavengers hemoglobin (Hb) and myoglobin. The antioxidant enzymes decreased levels of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells, whereas the NOS inhibitor N(G)-monomethyl-L-arginine as well as Hb increased the level of iNOS protein but not mRNA, indicating that NO inhibits iNOS protein expression. NF-kappa B was activated in LPS-stimulated RAW264.7 cells and the activation was significantly inhibited by antioxidant enzymes, but not by Hb. Similar results were obtained using LPS-stimulated rodent peritoneal macrophages. Extracellular O(-)(2) generation by LPS-stimulated macrophages was suppressed by SOD, but not by antioxidative enzymes, while accumulation of intracellular reactive oxygen species was inhibited by antioxidative enzymes, but not by SOD. Exogenous H(2)O(2) induced NF-kappa B activation in macrophages, which was inhibited by catalase and pyrroline dithiocarbamate (PDTC). H(2)O(2) enhanced iNOS expression and NO production in peritoneal macrophages when added with interferon-gamma, and the effect of H(2)O(2) was inhibited by catalase and PDTC. These findings suggest that H(2)O(2) production from LPS-stimulated macrophages participates in the upregulation of iNOS expression via NF-kappa B activation and that NO is a negative feedback inhibitor of iNOS protein expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号