首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

2.
《Process Biochemistry》2007,42(2):175-179
Two successive factorial designs followed by two response surface methodology were applied to optimize protopectinase production by Geotrichum klebahnii. Factorial designs were used to study the effect of 11 variables (mineral pool and pH) on enzyme production. Only pH and Fe2+ had significant effect on the protopectinase production in the conditions of the assay, the interaction between them not being significant. According to this result pH and Fe2+ were multivariate according to a Doelhert design. The central points were pH 3.5 and Fe2+ 1.8 μmol L−1. The results show a negative effect of pH and a positive (quadratic) effect of Fe2+ on enzyme production. The second Doelhert design was centered at pH 3.3. A relative maximum was obtained at pH 2.8 and Fe2+ 0.540 μmol L−1, where the enzyme activity obtained was 236 U/mL. This value is two times higher than the value reported elsewhere.  相似文献   

3.
N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or cationic protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we observe the rich structural polymorphism of pH responsive complexes prepared due to DNA interaction with C12NO/dioleoylphosphatidylethanolamine (DOPE) vesicles and discuss it in view of utilizing the surfactant for the gene delivery vector of a pH sensitive system. In neutral solutions, the DNA uptake is low, and a lamellar Lα phase formed by C12NO/DOPE is prevailing in the complexes at 0.2  C12NO/DOPE < 0.6 mol/mol. A maximum of ~ 30% of the total DNA volume in the sample is bound in a condensed lamellar phase LαC at C12NO/DOPE = 1 mol/mol and pH 7.2. In acidic conditions, a condensed inverted hexagonal phase HIIC was observed at C12NO/DOPE = 0.2 mol/mol. Commensurate lattice parameters, aHC  dLC, were detected at 0.3  C12NO/DOPE  0.4 mol/mol and pH = 4.9–6.4 suggesting that LαC and HIIC phases were epitaxially related. While at the same composition but pH ~ 7, the mixture forms a cubic phase (Pn3m) when the complexes were heated to 80 °C and cooled down to 20 °C. Finally, a large portion of the surfactant (C12NO/DOPE > 0.5) stabilizes the LαC phase in C12NO/DOPE/DNA complexes and the distance between DNA strands (dDNA) is modulated by the pH value. Both the composition and pH affect the DNA binding in the complexes reaching up to ~ 95% of the DNA total amount at acidic conditions.  相似文献   

4.
To convert bleached softwood paper grade pulp into dissolving pulp for viscose application, two stages of treatments consisting of enzymatic treatment and alkaline peroxide treatment were investigated. It was found that high reactivity (about 80%) of pulp could be achieved by endoglucanases (EG)-rich industrial cellulase treatment, and the α-cellulose content as well as the viscosity of enzymatically treated pulp can be further adjusted by the alkaline peroxide treatment with certain dosages of NaOH and H2O2 to finally meet the quality requirements of dissolving pulp. The resulting pulp with 68.7% of reactivity, 92.1% of α-cellulose content, and 506.9 mL/g of pulp viscosity could be obtained after the two stages of treatments. The appropriate dosage of EG-rich cellulase was 300 IU/g bone dry pulp in the stage of enzymatic treatment, while the suitable dosages of NaOH and H2O2 were 9 wt% and 1 wt%, respectively, in the stage of alkaline peroxide treatment.  相似文献   

5.
《Process Biochemistry》2014,49(6):1040-1046
The purification and characterization of an extracellular lichenase from the fungus Penicillium occitanis Pol6 were studied. The strain produced the maximum level of extracellular lichenase (45 ± 5 U ml−1) when grown in a medium containing oat flour (2%, w/v) at 30 °C for 7 days. The purified enzyme EGL showed as a single protein band on SDS–PAGE with a molecular mass of 20 kDa. Its N-terminal sequence of 10 amino acid residues was determined as LDNGAPLLNV. The purified enzyme showed an optimum activity at pH 3.0 and 50–60 °C. The half-lives of EGL at 60 °C and 70 °C were 80 min and 21 min, respectively. Substrate specificity studies revealed that the enzyme is a true β-1,3-1,4-d-glucanase. The enzyme hydrolyzed lichenan to yield trisaccharide, and tetrasaccharide as the main products. Under simulated mashing conditions, addition of EGL (20 U/ml) or a commercial β-glucanase (20 U/ml) reduced the filtration time (25% and 21.3%, respectively) and viscosity (10% and 8.18%, respectively). These characteristics indicate that EGL is a good candidate in the malting and brewing industry.  相似文献   

6.
In the present work nanoparticles (NPs) of pepsin were generated in an aqueous solution using high-intensity ultrasound, and were subsequently immobilized on low-density polyethylene (PE) films, or on polycarbonate (PC) plates, or on microscope glass slides. The pepsin NPs coated on the solid surfaces have been characterized by HRSEM, TEM, FTIR, XPS and DLS. The amount of enzyme introduced on the substrates, the leaching properties, and the catalytic activity of the immobilized enzyme on the three surfaces are compared. Catalytic activities of pepsin deposited onto the three solid surfaces as well as free pepsin, without sonication, and free pepsin NPs were compared at various pH levels and temperatures using a hemoglobin assay. Compared to native pepsin, pepsin coated onto PE showed the best catalytic activity in all the examined parameters. Pepsin immobilized on glass exhibited better activity than the native enzyme, especially at high temperatures. Enzyme activity of pepsin immobilized on PC was no better than native enzyme activity at all temperatures at pH 2, and only over a narrow pH range at 37 °C was the activity improved over the native enzyme. A remarkable observation is that immobilized pepsin on all the surfaces was still active to some extent even at pH 7, while free pepsin was completely inactive. The kinetic parameters, Km and Vmax were also calculated and compared for all the samples. Relative to the free enzyme, pepsin coated PE showed the greatest improvement in kinetic parameters (Km = 15 g/L, Vmax = 719 U/mg versus Km = 12.6 g/L and Vmax = 787 U/mg, respectively), whereas pepsin coated on PC exhibited the most unfavorable kinetic parameters (Km = 18 g/L, Vmax = 685 U/mg). The values for the anchored enzyme-glass were Km = 19 g/L, Vmax = 763 U/mg.  相似文献   

7.
A non-modified and modified with NaOH and ethylenediamine ultrafiltration membranes prepared from AN copolymer have been used as carriers for the immobilization of horseradish peroxidase (HRP) enzyme. The amount of bound protein onto the membranes and the activity of the immobilized enzyme have been investigated as well as the pH and thermal optimum, and the thermal stability of the free and immobilized HRP. The experiments have proved that the modified membrane is a better support for the immobilization of HRP enzyme. The latter has shown a greater thermal stability than the free enzyme.A possible application has been studied for reducing phenol concentration in water solutions through oxidation of phenol by hydrogen peroxide, in the presence of free and immobilized HRP enzyme on modified AN copolymer membranes. A higher degree of the phenol oxidation has been observed in the presence of the immobilized enzyme. A total removal of phenol has been achieved in the presence of immobilized HRP at concentration of the hydrogen peroxide 0.5 mmol L?1 and concentration of the phenol in the model solutions within the interval 5–40 mg L?1. A high degree of phenol oxidation (95.4%) has been achieved in phenol solution with 100 mg L?1 concentration in the presence of hydrogen peroxide and immobilized HRP, which demonstrates the promising opportunity of using the enzyme for bioremediation of waste waters, containing phenol.The immobilized HRP has shown good operational stability. Deactivation of the immobilized enzyme to 50% of the initial activity has been observed after the 20th day of the enzyme operation.  相似文献   

8.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

9.
A new laccase from Shiraia sp.SUPER-H168 was purified by ion exchange column chromatography and gel permeation chromatography and the apparent molecular mass of this enzyme was 70.78 kDa, as determined by MALDI/TOF-MS. The optimum pH value of the purified laccase was 4, 6, 5.5 and 3 with 2,6-dimethoxyphenol (DMP), syringaldazine, guaiacol and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as substrates, respectively. The optimum temperature of the purified laccase was 50 °C using DMP, syringaldazine and guaiacol as substrates, but 60 °C for ABTS. Inhibitors and metal ions of SDS, NaN3, Ag+ and Fe3+ showed inhibition on enzyme activity of 10.22%, 7.86%, 8.13% and 67.50%, respectively. Fe2+ completely inhibited the purified laccase. The Kcat/Km values of the purified laccase toward DMP, ABTS guaiacol and syringaldazine were 3.99 × 106, 3.74 × 107, 8.01 × 104 and 2.35 × 107 mol?1 L S?1, respectively. The N-terminal amino acid sequence of the purified laccase showed 36.4% similarity to Pleurotus ostrestus. Approximately 66% of the Acid Blue 129 (100 mg L?1) was decolorized by 2.5 U of the purified laccase after a 120 min incubation at 50 °C. Acid Red 1 (20 mg L?1) and Reactive Black 5 (50 mg L?1) were decolorized by the purified laccase after the addition of Acid Blue 129 (100 mg L?1).  相似文献   

10.
An efficient purification system for purifying recombinant Bacillus subtilis 168 catalase (KatA) expressed in Escherichia coli was developed. The basic region containing 252–273 amino acids derived from E. coli ribosomal protein L2 was used as an affinity tag while the small ubiquitin-like modifier (SUMO) was introduced as one specific protease cleavage site between the target protein and the purification tags. L2 (252–273)–SUMO fusion protein purification method can be effectively applied to purify the recombinant catalase using cation exchange resin. This purification procedure was used to purify the KatA and achieved a purification fold of 30.5, a specific activity of 48,227.2 U/mg and an activity recovery of 74.5%. The enzyme showed a Soret peak at 407 nm. The enzyme kept its activity between pH 5 and 10 and between 30 °C and 60 °C, with the highest activity at pH 8.0 and 37 °C. The enzyme displayed an apparent Km of 39.08 mM for hydrogen peroxide. These results agree well with the previous reports about B. subtilis catalase. L2 (252–273)–SUMO fusion protein purification technique provides a novel and effective fusion expression system for the production of recombinant proteins.  相似文献   

11.
The β-glucosidase gene Tt-bgl from Thermotoga thermarum DSM 5069T was cloned and overexpressed in Escherichia coli. A simple strategy, induction at 37 °C with no IPTG, was explored to reduce the inclusion bodies, by which the activity of Tt-BGL was 13 U/mL in LB medium. Recombinant Tt-BGL was purified by heat treatment followed by Ni–NTA affinity. The optimal activity was at pH 4.8 and 90 °C. The activity of Tt-BGL was significantly enhanced by methanol and Al3+. The enzyme was stable over pH range of 4.4–8.0, and had a 2-h half life at 90 °C. The Vmax for p-nitrophenyl-β-d-glucopyranoside and ginsenoside Rb1 was 142 U/mg and 107 U/mg, while the Km was 0.59 mM and 0.15 mM, respectively. The activity of the enzyme was not inhibited by ginsenoside Rb1 (36 g/L). It was activated by glucose at concentrations lower that 400 mM. With glucose further increasing, the activity of Tt-BGL was gradually inhibited, but remained 50% of the original value in even as high as 1500 mM glucose. Under the optimal conditions, Tt-BGL transformed ginsenoside Rb1 (36 g/L) to Rd by 95% in 1 h.  相似文献   

12.
This paper reports development and implementation of superior fermentation strategies for β-galactosidase production by Lactobacillus acidophilus in a stirred-tank bioreactor. Process parameters (aeration and agitation) were optimized for the process by application of Central Composite Design. Aeration rate of 0.5 vvm and agitation speed of 250 rpm were most suitable for β-galactosidase production (2001.2 U/L). Further improvement of the operation in pH controlled environment resulted in 2135 U/L of β-galactosidase with productivity of 142.39 U/L h. Kinetic modeling for biomass and enzyme production and substrate utilization were carried out at the aforementioned pH controlled conditions. The logistic regression model (X0 = 0.01 g/L; Xmax = 2.948 g/L; μmax = 0.59/h; R2 = 0.97) was used for mathematical interpretation of biomass production. Mercier's model proved to be better than Luedeking–Piret model in describing β-galactosidase production (P0 = 0.7942 U/L; Pmax = 2169.3 U/L; Pr = 0.696/h; R2 = 0.99) whereas the latter was more efficient in mathematical illustration of lactose utilization (m = 0.187 g/g h; Yx/s = 0.301 g/L; R2 = 0.98) among the two used in this study. Strategies like fed-batch fermentation (3694.6 U/L) and semi-continuous fermentation (5551.9 U/L) further enhanced β-galactosidase production by 1.8 and 2.8 fold respectively.  相似文献   

13.
Field trials were carried out to evaluate six treatments combining biological agents and chemical fungicides applied via chemigation against white mold (Sclerotinia sclerotiorum) on processing tomatoes. The experiment was performed in Goiânia, Brazil, with tomato hybrid Heinz 7155 in 2009 and 2010 in a field previously infested with S. sclerotiorum sclerotia. Treatments were arranged in a randomized complete block design in a 2 × 3 factorial structure (with and without Trichoderma spp. 1.0 × 109 viable conidia mL−1 ha−1) × fluazinam (1.0 L ha−1), procimidone (1.5 L ha−1) and control, applied by drip irrigation. Treatments were applied three times 10 days apart, starting one month after transplanting. Each treatment consisted of plots with three 72-meter rows with four plants m−1 and 1.5 m spacing between rows, with three replications. Based on disease incidence evaluated weekly, the area under the disease progress curve (AUDPC) was obtained. Yield and its components were evaluated in addition to fruit pH and °Brix. Results were subjected to ANOVA, Scott-Knott (5%), and regression analysis. Biocontrol using Trichoderma spp. via chemigation singly or in combination with synthetic fungicides fluazinam and procimidone reduced AUDPC and increased fruit yield up to 25 t ha−1. The best treatment for controlling white mold also increased pulp yield around 1.0 and 7.0 t ha−1 in 2009 and 2010, respectively. The present work demonstrated the advantages of white mold biological control in processing tomato crops, where drip irrigation favored Trichoderma spp. delivery close to the plants and to the inoculum source.  相似文献   

14.
《Process Biochemistry》2014,49(1):69-76
Alkaline pectate lyases (PLs) play an important role in mild and eco-friendly bioscouring pretreatment processes in the textile industry. However, to date, only a few PLs can be applied in industrial-scale production, and many of them exhibit high production cost, low activity, and/or do not meet the treatment requirements. In this study, an alkaline PL gene was cloned from the metagenomic DNA of alkaline environment soils. The gene pelB consisted of 1263 nucleotides and encoded a mature protein (PelB) of 399 amino acids, which was expressed in Escherichia coli. The maximum catalytic activity of the enzyme exhibited a bimodal distribution at pH 8.1 and 9.8 and an optimal temperature of 55 °C. The Km and Vmax values of PelB were 1.78 g/L and 1084.8 μmol/(L min) at 45 °C, respectively. Substrate specificity analysis demonstrated the high cleavage capability of PelB on a broad range of substrates of natural methylated pectin. Based on the degradation products, PelB was considered to be an endo-acting lyase. Using high-cell-density cultivation in 7-L bioreactor, the highest PL activity (1816.2 U/mL) was achieved. Thus, the recombinant PelB, with promising properties for use in bioscouring in the textile pretreatment process, should be a potential enzyme for industrial applications.  相似文献   

15.
An alkaline and thermostable pectinase production from Bacillus subtilis SS was optimized under submerged fermentation and its application was tested in textile industry for desizing and bioscouring of cotton and micropoly fabrics. Desizing of fabric was the best with 5 U/g pectinase treatment for 120 min at pH 9.5 and 65 °C. Under optimized conditions of bioscouring, desized cotton showed highest reducing sugar liberation and weight loss than desized micropoly. Along with enzyme, addition of chelating (EDTA) and wetting agent markedly enhanced the weight loss compared to single use of enzyme or EDTA alone. Agitation (50 ± 2) enhanced the weight loss values of cotton (1.9%) and micropoly fabric (1.7%) at pH 9.5 after treatment time of 2 h. Bioscouring of fabrics with pectinase resulted in enhancement of various physical properties of fabrics viz. whiteness (1.2%), tensile strength (1.6%) and tearness (3.0%) over conventionally alkaline scoured fabrics.  相似文献   

16.
In this work, an active phytase concentrated extract from soybean sprout was immobilized on a polymethacrylate-based polymer Sepabead EC-EP which is activated with epoxy groups. The immobilized enzyme exhibited an activity of 0.1 U/g of carrier and activity yield of 64.7%. The optimum temperature and pH for the activity of both free and immobilized enzymes were found as 60 °C and pH 5.0, respectively. The immobilized enzyme was more stable than free enzyme in the range of pH 3.0–8.0 and more than 70% of the original activity was recovered. Both the enzymes completely retained nearly about 84% of their original activity at 65 °C. The Km and Vmax values were measured as 5 mM and 0.63 U/mg for free enzyme and 12.5 mM and 0.71 U/mg for immobilized enzyme, respectively. Free and immobilized soybean sprout phytase enzymes were also used in the biodegradation of soymilk phytate. The immobilized enzyme hydrolysed 92.5% of soymilk phytate in 7 h at 60 °C, as compared with 98% hydrolysis observed for the native enzyme over the same period of time. The immobilization procedure on Sepabead EC-EP is very cheap and also easy to carry out, and the features of the immobilized enzyme are very attractive that the potential for practical application is considerable.  相似文献   

17.
A β-glucosidase gene from Putranjiva roxburghii (PRGH1) was heterologously expressed in Saccharomyces cerevisiae to enable growth on cellobiose. The recombinant enzyme was secreted to the culture medium, purified and biochemically characterized. The enzyme is a glycoprotein with a molecular weight of ∼68 kDa and exhibited enzymatic activity with β‐linked aryl substrates like pNP-Fuc, pNP-Glc, pNP-Gal and pNP-Cel with catalytic efficiency in that order. Significant enzyme activity was observed for cellobiose, however the enzyme activity was decreased with increase in chain length of glycan substrates. Using cellobiose as substrate, the enzyme showed optimal activity at pH 5.0 and 65 °C. The enzyme was thermostable up to 75 °C for 60 min. The enzyme showed significant resistance towards both glucose and ethanol induced inhibition. The recombinant S. cerevisiae strain showed advantages in cell growth, glucose and bio-ethanol production over the native strain with cellobiose as sole carbon source. In simultaneous saccharification and fermentation (SSF) experiments, the recombinant strain was used for bio-ethanol production from two different cellulosic biomass sources. At the end of the SSF, we obtained 9.47 g L−1 and 14.32 g L−1 of bio-ethanol by using carboxymethyl cellulose and pre-treated rice straw respectively. This is first report where a β-glucosidase gene from plant origin has been expressed in S. cerevisiae and used in SSF.  相似文献   

18.
《Process Biochemistry》2010,45(9):1529-1536
(R)-phenylephrine [(R)-PE] is an α1-adrenergic receptor agonist that is widely used in over-the-counter drugs to treat the common cold. We found that Rhodococcus erythropolis BCRC 10909 can convert detectable level of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (S)-PE by high performance liquid chromatography tandem mass spectrometry analysis. An amino alcohol dehydrogenase gene (RE_AADH) which possesses the ability to convert HPMAE to (S)-PE was then isolated from R. erythropolis BCRC 10909 and expressed in Escherichia coli NovaBlue. The purified RE_AADH, tagged with 6×His, had a molecular mass of approximately 30 kDa and exhibited a specific activity of 0.19 μU/mg to HPMAE in the presence of NADPH, indicating this enzyme could be categorized as NADP+-dependent short-chain dehydrogenase reductase. E. coli NovaBlue cell expressing the RE_AADH gene was able to convert HPMAE to (S)-PE with more than 99% enantiomeric excess (ee), 78% yield and a productivity of 3.9 mmol (S)-PE/L h in 12 h at 30 °C and pH 7. The (S)-PE, recovered from reaction mixture by precipitation at pH 11.3, could be converted to (R)-PE (ee > 99%) by Walden inversion reaction. This is the first reported biocatalytic process for the production of (S)-PE from HPMAE.  相似文献   

19.
《Comptes rendus biologies》2019,342(1-2):7-17
This study was carried out in order to investigate the ability of tissues of Argania spinosa (L.) to undergo unlimited cell divisions by triggering their proliferative potential via callogenesis. Axenic cultures were efficiently established using axillary buds cultured on half-strength Murashige and Skoog (MS) medium after 20 min of surface sterilization with sodium hypochlorite 6% (v/v). The highest callus rate was achieved with 1.0 mg L−1 of naphthaleneacetic acid (NAA) and 1.0 mg L−1 of 2,4-dichlorophenoxyacetic acid (2,4D) or similarly with 0.01 mg L−1 of 6-benzylaminopurine (BAP) and 1.0 mg L−1 of 2,4D at pH of 5.8, under dark conditions. The results of this study show also a significant increase in the callus's antioxidant power under abiotic pressure induced by NaCl. Catalase (CAT), peroxidase (PO), and superoxide dismutase (SOD) activities were significantly triggered, which protected the cells from the stimulated oxidative stress, under hydrogen peroxide (H2O2) significant release. This reaction favors subsequently the tissue recover process linked to the low abundance of polyphenol oxidase (PPO) activity and malondialdehyde (MDA) content. This work proves the efficiency of salt stress in boosting the argan cell's antioxidant status, which could be commercially applied in the field of cells regenerative therapy.  相似文献   

20.
The objective of the present study was to isolate halotolerant bacteria from the sediment sample collected from Marakanam Solar Salterns, Tamil Nadu, India using NaCl supplemented media and screened for amylase production. Among the 22 isolates recovered, two strains that had immense potential were selected for amylase production and designated as P1 and P2. The phylogenetic analysis revealed that P1 and P2 have highest homology with Pontibacillus chungwhensis (99%) and Bacillus barbaricus (100%). Their amylase activity was optimized to obtain high yield under various temperature, pH and NaCl concentration. P1 and P2 strain showed respective, amylase activity maximum at 35 °C and 40 °C; pH 7.0 and 8.0; 1.5 M and 1.0 M NaCl concentration. Further under optimized conditions, the amylase activity of P1 strain (49.6 U mL?1) was higher than P2 strain. Therefore, the amylase enzyme isolated from P. chungwhensis P1 was immobilized in sodium alginate beads. Compared to the free enzyme form (49.6 U mL?1), the immobilized enzyme showed higher amylase activity as 90.3 U mL?1. The enzyme was further purified partially and the molecular mass was determined as 40 kDa by SDS–PAGE. Thus, high activity of amylase even under increased NaCl concentration would render immense benefits in food processing industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号